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Information-Processing
Approaches to Cognitive
Development

David Klahr
Carnegie Mellon University

INTRODUCTION

Few psychologists would disagree with the claim that cognition involves the
processing of information or that cognitive development involves changes
in the content, structure, and processing of information. Indeed, since the
1970s, most of what has been discovered about children’s thinking deals, in
one way or another, with how they process information. However, if you
asked different developmental psychologists to identify examples of infor-
mation-processing approaches to cognitive development, you would prob-
ably find some interesting and important differences in their responses.
Some might include the Piagetian and neo-Piagetian research that focuses
on structures and structural changes. Others would limit the information-
processing label to research that uses computer simulation to model
developmenta! phenomena. Still others might point to the distinction
between “classic” symbol-oriented information-processing theories (Newell
& Simon, 1972) and more recent connectionist approaches (Bechtel &
Abrahamsen 1991; Rumelhart & McClelland, 1986) to computational
modeling of cognitive changes, arguing that only the latter are really
suitable for modeling developmental processes (McClelland, 1989),

The nearly universal acceptance of the term information processing,
when combined with diverse interpretations of its meaning, can conspire to
bewilder and perplex the student of cognitive development. Which research
paradigms exemplify information processing approaches? What are their
merits? What have we learned about cognitive development from them?
The goals of this chapter are twofold: (a) to describe the characteristic
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features of information-processing approaches to cognitive development,
and (b) to illustrate what we have learned about children’s cognitive
development from the research characterized by different combinations of
these features.

Defining “Information-Processing Approaches” to
Cognitive Development

In psychology, as in all other scientific fields, research is carried out within
the constraints of a set of basic theoretical assumptions and according to
widely accepted methodological practices. Because they determine what
questions will be asked and how they will be answered, these assumptions
and practices can profoundly affect our understanding of cognition and its
development. Information-processing approaches to cognitive development
have their own characteristic set of theoretical assumptions and method-
ological practices. In this chapter, I attempt to reduce these to a manageable |
few: They are listed in Table 5.1. 1 organized this chapter around the list of -
assumptions and practices presented in Table 5.1. For each of the entries
listed, I describe several studies, models, or findings that exemplify that
entry. Although any particular example represents a combination of
features listed in Table 5.1, I have attempted to locate them where they best
illustrate the item being discussed.

The assumptions (Al, A2, and A3) and the practices associated with them
(P1-P4) vary along what I have called a soft-core to hard-core continuum
(Klahr, 1989). For example, some of the studies described in this chapter,
while accepting assumptions Al to A3, are not at all specific about any of

TABLES.A
Assumptions and Praclices of Information-Processing Approaches to the
Study of Cognitive Development

Theoretical Assumptions
Al: Children's mental activity involves processes that manipulate symbols and symbol struc-
tures.
A2 These symbolic processes operale within an information-processing system having iden-
tifiable properties, constraints, and consequences.
A3: Copnitive development occurs via self-modification of the information-processing sys-
1em.
Methodological Practices
P1: Use of highly detailed analyses of the environment facing the child on specific tasks.
P2: Use of formal notational schemes for expressing complex, dynamic systems.,
P3: Measuring the time-course of cognitive processing over both relatively short durations
{chronometric analysis) and medium durations (microgenetic studies).
P4: Use of high-density data from error patierns and protocels to induca and test complex
modcls.
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them, while other studies include computer-simulation models of how
children accomplish some tasks. The former would be soft-core examples,
and the latter would be hard core. With respect to the methodological
practices, the soft end of P2 would involve the use of flow-charts and
diagrams to describe a model of children’s thinking, whereas the hard end
would involve a computational model. In addition to varying along the
hardness continuum, different examples vary with respect to how many of
the assumptions and practices they reflect. Rather than treating these
descriptors as a set of defining properties, they should be interpreted as
likely properties of typical examples. That is, the information-processing
notion itself is better expressed in terms of family resemblance than as an
idea having clear defining properties. Before visiting the members of this
family, it may be useful to explore a bit of its genealogy.

Origins

In the early 1970s, Roger Brown reviewed the previous two decades in an
attempt to identify the forces that revitalized research in cognitive develop-
ment in the late 1950s. One of them was the creation of computer
simulation models of cognitive processes in adults. As Brown (1970) said:

Since machines—hardware—could accomplish information processing of
great complexity, it was obviously perfectly scientific and objective to
attribute such processing to the human brain. Why limit the mind to
association by contiguity and reinforcement when the computer, admittedly a
lesser mechanism, could do so much more? Computers freed psychologists to
invent mental processes as complex as they liked. (pp. ix-x)

The other force identified by Brown was America's discovery of Jean
Piaget:

computer simulation, psycholinguistics, curriculum reform, and mathemat-
ical models altered our notions of the scientific enterprise in such a way to
cause us to see Piaget as a very modern psychologist. To see that he was, in
fact, the great psychologist of cognitive development. (p. x)

Ten years prior to Brown’s acknowledgment of the relevance and impact
of computational models to the topics first addressed by Piaget, Herbert
Simon (1962) had suggested the general form of an information-processing
approach to cognitive development:

If we can construct an information-processing system with rules of behavior
that lead it to behave like the dynamic system we are trying to describe, then
this system is a theory of the child at one stage of the development. Having
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described a particular stage by a program, we would then face the task of
discovering what additional information-processing mechanisins are needed
to simulate developmental change —the transition from one stage to the next.
That is, we would need to discover how the system could modify its own
structure. Thus, the theory would have two parts—a program to describe
performance at a particular stage and a learning program governing the
transitions from stage to stage. (pp. 154-155)

Simon’s suggestion contained two ideas that departed radically from the
then prevailing views in developmental psychology.! The first idea was that
theories about thinking could be stated as computer programs. These
“computational models of thought,” as they came to be called, have one
important property that distinguishes them from all other types of theoret-
ical statements: They independently execute the mental processes they
_ represent. That is, rather than leaving it to the reader to interpret a verbal
statement about what is involved in an analogical mapping or a memory
search or a match between two symbols, computational models actually do
the mapping, searching, and matching so that the complex implications of
multiple processes can be unambiguously derived. The second idea in
Simon’s suggestion followed from the first: If dif ferent states of cognitive
development could be described as programs, then the developmental
process itself could also be described as a program that took the earlier
program and transformed it into the later one. Such a program would have
the capacity to alter and extend its own processes and structures, That is, it
would be a computational model possessing some of the same self-
modification capacities as the child’s developing mind.

Today, the soft-core versions of Simon’s two ideas form the cornerstone
of a very large proportion of the research on both adult cognition and
cognitive development. There is no question that in the field of adult
cognition, information-processing approaches have had an enormous im-
pact on both theory and methodology (Lachman, Lachman, & Butterfield,
1979; Palmer & Kimchi, 1986). One reason that the idea of thinking as
information processing is so widespread is that it is highly nonspecific. As
we shall see, different investigators draw quite different implications from
this general notion. However, the hard-core version of Al to Al-—the
“theory is the program” view expressed by Simon--has yet to become the
dominant view in developmental psychology. Even among the many
developmentalists who accept assumptions Al to A3, there are relatively
few who can point to examples in their own work of hard-core implemen-

11 i5 easy to forget just where the field was in the early 1960s. Note that the Kendlers’ famous
work on reversal shift, which challenged the prevailing notions of S~R learning by suggesting
that an internal mediator played a role in concept acquisition, was published in the same year
as Simon's (Kendler & Kendler, 1962).
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tations of information-processing theories. Nevertheless, there is a general
trend in the field toward “hardening the core,” and throughout this chapter
I refer to examples of the trend.

CHILDREN'S MENTAL ACTIVITY INVOLVES
PROCESSES THAT MANIPULATE SYMBOLS
AND SYMBOL STRUCTURES

The first of the assumptions listed in Table 5.1 is the most pervasive and,
correspondingly, the most diffusely defined. In this section I illustrate the
different meanings that assumption Al has taken in the developmental
literature. The examples will also describe some important findings about
children’s information processing. This is the pattern followed throughout
the rest of the chapter: Specific examples illustrate the main features listed
in Table 5.1, and describe a bit of what we know about how children think.

Symbolization in the most diffuse sense addresses the power of the child's
representational capacity, without any concern with, or commitment to,
how that capacity might be supported in a physical system. Examples
incluede Piagetian accounts of “symbolic play” or imagery (Piaget, 1951). As
information-processing accounts move along the soft to hard dimension,
they use terms such as symbo! and symbol-structure in ways that are both
more mechanistic and more microscopic.

Newell (1980) defined the hard-core information-processing view of the
role of symbols, symbol structures, and symbol manipulation in cognition.
He defined a physical symbol system as one that:

is capable of having and manipulating symbols, yet is also realizable within
our physical universe . . . [This concept] has emerged from our growing
experience and analysis of the computer and how to program it to perform
intellectual and perceptual tasks. The notion of symbol that it defines is
internal to this concept of a system. Thus, it is a hypothesis that these symbols
are in fact the same symbols that we humans have and use everyday of our
lives. Stated another way, the hypothesis is that humans are instances of
physical symbol systems, and by virtue of this, mind enters into the physical
unjverse. (p. 136)

The fundamental property of a symbol is that it can designate® something
else (represented as a symbol structure). Such symbols comprise the
elementary units in any representation of knowledge including sensory-
motor knowledge or linguistic structures. Philosophical distinctions be-

2As Newell noted, many terms similar to designate could be used here: refer, denote, name,
stand for, mean, etc.
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tween dense and articulated symbols {Goodman, 1968) or personal and
consensual symbols (Kolers & Smythe, 1984) emphasize the likelihood of
idiosyncratic symbol structures for specific individuals, and the difference
between internal symbol structures and their external referents. However,
they are entirely consistent with Newell’s Physical Symbo! System hypoth-
esis.

Are Preschoolers Presymbolic?

These terminological distinctions become important when one asks ques-
tions about the developmental course of symbolic capacity, because unless
one is specific about the sense in which symbolic is intended, one will find
inconsistent and contradictory results in the literature. A very clear
distinction is made by DeLoache (1987) in her investigations of pre-
schoolers’ ability to use one thing to represent another.

Del.oache investigated this question by presenting children with a scale
model of a full-sized room, and then determining the extent to which
children understood the correspondences between the two. In one series of
studies, children were familiarized with a room filled with assorted furni-
ture, and they watched while a toy was hidden. Then they were shown a
scale model of the room, and asked to find a miniature version of the toy.
They were instructed that the miniature toy was in the “same place” in the
model as the full-sized one was in the full-sized room, and they were
instructed to try to find it. Following the retrieval from the model, the
children were asked to find the original item. (This was done as a memory
check to make sure that children had not forgotten where the toy was
originally hidden.) For some children the role of the model and the full-size
room was as just described, and for others it was reversed. Two age groups
were used: a 2.5-year-old group and a 3-year-old group.

The results were dramatic. The older group found the toy on about 80%
of the trials, while the younger group found it on less than 20%. Both
groups could remember the original hiding place on about 80% of the trials,
so faulty memory cannot explain the results. Nor was there any effect for
whether the room or the model was used for the original hiding (with the
model or room, respectively used as the retrieval location). In a second
experiment, DeL.oache used a photograph of the room, instead of the actual
room, to indicate where the object was hidden. With this change, 2.5-year-
old children were able to perform at nearly the same level as the 3-year-olds
in the first experiment. DeLoache notes that this outcome is “directly
contrary to the standard view of the efficacy of pictures versus real objects”
(p. 1557},

Taken as a whole, Deloache’s results demonstrate an abrupt improve-
ment between 30 and 36 months in children’s ability to understand the
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symbolic relations between a model of a room and the real room. DelLoache
summarizes this as a milestone in “the realization that an object can be
understood both as a thing itself and as a symbol of something else”
{Deloache, 1987, p. 1556), and she notes that the younger children fail “to
think about a symbolic object both as an object and as a symbol” (p. 1557).
Thus, at the global (or conventional) level, Del.oache’s results suggest that
the 2.5-year-old children are presymbolic (at least on this task.) But it is
clear that if one were to formulate detailed models of both the younger and
older children's knowledge about this task, one would, in both cases,
postulate systems that had the ability to process symbols at the microscopic
level defined above. Thus, even in an ingenious research program —such as
DeLoache’s—directed at discovering rapid changes in the “symbolic func-
tioning of very young children,” the assumption of underlying symbol-
processing capacity remains.

Knowledge Structures as Symbol Structures

Assumptions about the centrality of symbol structures are implicit in the
“knowledge is power” approach to cognitive development. The general goal
of this line of work is to demonstrate that much of the advantage adults
have over children derives from their more extensive knowledge base in
specific domains, rather than from more powerful general processes. But as
Chi and Ceci (1987) comment, “saying that young children have less
knowledge than older children or adults borders on triviality. The sheer
quantity of knowledge, although important, is not nearly as important as
how that knowledge is structured” (p. 115). Chi's studies (1976, 1977, 1978)
provide convincing evidence for the influence of both more and better
structured knowledge. In all of these investigations, Chi found that children
who have more richly connected, domain-specific, knowledge than adults
{e.g., children who have more knowledge than their adult counterparts
about chess or dinosaurs or classmates’ faces) outperform their adult
counterparts on a range of tasks in which access to that knowledge is a
determining factor in performance.

For example, in one study Chi (1978) examined the differences between
adults and 10-year-olds on two tasks: a conventional digit span task and
memory for chess positions. The children were all experienced chess
players, and on a standard chess task, they performed slightly better than
did the adults, who were novice chess players. The digit span task, presented
to both groups, yielded the standard result: Adults’ spans are greater than
children’s. The criterion chess task was memory for the location of pieces
from various mid-game positions. Here, the children outperformed the
adults, This general effect has been replicated many times, with a wide
range of materials (Barrett, 1978; Lindberg, 1980).
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In all of these, and related, studies, the major explanatory variabie is
access to symbolic structures (chunks, semantic nets, etc.) that support the
superior performance of the children, Although, as Chi and Ceci (1987)
argue, there exists “a lack of consensus on precisely what structure means”
(p. 129), just about every definition includes the ability for one part of the
structure to be connected to (or provide access to, or evoke, or derive
inferences or generalizations from) some other part of the structure. And
underlying any of these interpretations are just the kind of symbol
structures described in Newell’s concept of physical symbol systems.

SYMBOLIC PROCESSES OPERATE WITHIN

AN INFORMATION-PROCESSING SYSTEM
HAVING IDENTIFIABLE PROPERTIES,
CONSTRAINTS, AND CONSEQUENCES -

Developmentalists interested in a variety of cognitive processes have
generally adopted the view of the adult information-processing system that
emerged in the late 1960s and early 1970s (Atkinson & Shiffrin, 1968; Craik
& Lockhart, 1972; Norman, Rumelhart, & the LNR Research Group,
1975). However, as in all other aspects of information processing, there is
a wide range of interpretations and applications of the general idea of
information processing that vary along the hard to soft dimension. In this
section, I begin with a general description of a widely accepted view of the
human information-processing system. Then 1 go on to describe some
specific hard-core computational models. Following that I discuss some
soft-core examples of information-processing systems.

The Organization of the Human Information-
Processing System

The standard description of the human information-processing system
includes several sensory buffers (e.g., “iconic” memory, an *acoustic
buffer”), a limited capacity short-term memory (STM), and an unlimited,
content-addressable long-term memory). This characterization is unabash-
edly derived from, and analogous to, the gross functional features of
computer architectures. Nevertheless, as I argue later in this chapter, this
does not imply that information-processing psychologists believe that the
brain is structurally organized like a computer.

Newell (1972, 1973, 1981) originated the idea of a cognitive architecture
of the mind. The idea has gone through successive elaborations, one of
which is described in Card, Moran, and Newell's (1983} proposal for what
they called the Model Human Processor (MHP). This is a model of the
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human information-processing system that includes not only the gross
organization of the different information stores and their connections, but
also estimates of processing rates and capacities. MHP was designed to
facilitate predictions about human behavior in a variety of situations
involving interactions between humans and computers. It was based on 2
vast amount of empirical data on human performance in perceptual,
auditory, motor, and simple cognitive tasks.

Their model is illustrated in Fig. 5.1a and 5.1b. It includes a long-term
memory, a working memory, two perceptual stores for visual and auditory
information, and three subsystems for cognitive, motor, and perceptual
processing. For each of these stores, there are associated estimates of
storage capacity, decay times, cycle times, and the type of code as well as
connectivity to the rest of the system.

The perceptual system consists of sensors and associated buffer memories, the
most important buffer memories being a Visual Image Store and an Auditory
Image Store to hold the output of the sensory system while it is being
symbolically coded. The cognitive system receives symbolically coded infor-
mation from the sensory image Stores in its Working Memory and uses
previously stored information in Long-Term Memory to make decisions
about how to respond. The motor system carries out the response. As an
approximation, the information processing of the human will be described as
if there were a separate processor for each subsystem: a Perceptual Processor,
a Cognitive Processor, and a Motor Processor. For some tasks (pressing a key
in response to a light) the human must behave as a serial processor. For other
tasks (typing, reading, simultancous translation) integrated, parallel opera-
tion of the three subsystems is possible, in the manner of three pipelined
processors: information flows continuously from input to output with a
characteristically short time lag showing that all three processors are working
simultaneously.

The memories and processors are described by a few parameters, The most
important parameters of a memory are g, the storage capacity in items, §, the
decay time of an item, and x, the main code type (physical, acoustic, visual,
semantic). The most important parameter of a processor is 7, the cycle time.
(Card et al., 1983, pp. 24-25)

Although the MHP was formulated to account for the perceptual and
motor behavior of adults interacting with computers, it is a good example
of the more general attempt to formuiate a cognitive architecture of the
mind. More specifically, it is a very successful integration of a general
information-processing orientation with the constraints provided by a
massive amount of experimental data on human performance. To date, no
one has proposed a “kiddie” version of MHP, although some attempts have
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been made to chart the developmental course of some of its parameters.
(See the description of Kail’s work in a later section.)

Production Systems

Cognition has both a serial and a parallel aspect to it. At both the
underlying neural level, where massively parallel computations are occur-
ring, and at the perceptual-cognitive interface, where the sense organs
encode the external world for further processing by higher order mental
processes, there must be a high degree of parallelism. On the other hand,
both rational thought and motor acts from speech to locomotion require a
certain degree of seriality. These considerations led Newell and Simon
(1972) to propose a formalization of high-order mental processes in terms
of condition-action rules called productions. Newell (1973) implemented
this idea as a programming language, called PSG,? for creating computa-
tional models as running production systems.

Production systems are a class of computer-simulation models stated in
terms of condition-action rules. A production system consists of two
interacting data structures: (a) A working memory consisting of a collection
of symbol structures called working memory elements; (b) A production
memory consisting of condition-action rules called productions, the con-
ditions of which describe configurations of working memory elements and
the actions of which specify modifications to the contents of working
memory. Production memory and working memory are related through the
" recognize-act cycle, which is comprised of three distinct processes:

1. The match process finds productions the conditions of which match
against the current state of working memory. The same rule may
match against working memory in different ways, and each such
mapping is called an instantiation. When a particular production is
instantiated, we say that its conditions have been satisfied. In
addition to the possibility of a single production being satisfied by
several distinct instantiations, several different productions may be
satisfied at once. Both of these situations lead to conflict.

2. The conflict resolution process selects one or more of the instanti-
ated productions for applications.

*PSG is an acronym for “Production System, version G.” Although this was the first
publically distributed general-purpose system for running production systems on computers,
the “version G” implies that Newell had deemed its six precursor versions unsuitable for public
consumption. For a brief account of the genealogy of production system languages see Neches,
{.angley, and Klahr {(1987).
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3. The act process applies the instantiated actions of the selected rules.
Actions can include the modification of the contents of working
memory, as well as external perceptual-motor acts.

Production systems can be thought of as complex, dynamic stimulus-re-
sponse pairs in which both the S and the R involve symbolic structures.
They provide both a parallel associative recognition memory, on the
condition side, and a serial response on the action side. The basic 1‘
recognize-act process operates in cycles, with one or more rules being / |
selected and applied, the new contents of working memory leading another f |
set of rules to be applied, and so forth.

Both Newell's PSG, and Anderson’s (1983} ACT*, which combined
production systems with semantic nets, provided computational languages
for formulating cognitive models. More important, these systems were
theoretical extensions of the standard model into some very specific
proposals about how the human cognitive architecture is structured. These
proposals took the form of a type of computational architecture—the
production system—and production systems have since been used to model
several aspects of cognitive development.

Production-System Models of Children’s
Performance

For developmentalists, one of the most valuable features of production
systems is their potential to model the change process itself: their potential
for self-modification. Later in this chapter, explain why self-modification
is such an important and powerful feature of hard-core information-
processing models, and I describe some approaches that exploit this
self-modification capacity. But first, I describe production-system models
of children’s performance at specific levels of development. These models,
even though cast only as models of dif ferent performance levels, rather than
as models of transition processes, serve useful functions.

In this section I describe four different ways in which non self-modifying
production systems have been used to model children’s performance. The
first example illustrates how production systems can be matched to
chronometric data to produce some estimates of the duration of elementary
components of the recognize-act cycle. The second example illustrates one
of the most valuable features of production systems for modeling cognitive
development: the ease with which different performance levels can be
represented by a family of models having different production sets. The
third example focuses on how production systems can include encoding and
performance productions in the same general format, and the final example
illustrates a kind of vertical integration in a production-system model that
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represents several levels of knowledge from general principles down to
specific encoding rules.

Quantification: Matching Production Firings to Chronometric Data.
Production-system models of thinking were initially developed to account
for the verbal protocols generated by subjects working on puzzies requiring
several minutes to solve (Newell, 1966). However, a much finer temporal
grain of analysis was used in the first production-system models that
actually ran as computer simulations. Newell (1973) introduced PSG in the
context of the Sternberg memory-scanning paradigm (described later in this
chapter). The same volume (Chase, 1973) included a description of a model,
written in PSG, of elementary processes for quantification: subitizing,
counting, and adding (Klahr, 1973). Both of these models were atypical of
most subsequent production-system models in that they attempted to
account for chronometric data in terms of the dynamic properties of the
production-system execution cycle. That is, they estimated the duration of
specific microprocesses within the recognize-act ¢ycle (such as the time to
do a match, or the time to execute an action) by relating the number of such
microprocess executions to the reaction-time data.

Although neither of these early models dealt with developmental data,
the model of elementary quantification processes was subsequently elabo-
rated into one that did deal with the differences in subitizing rates between
children and adults (Klahr & Wallace, 1976, Chapter 3 & 8). The elabora-
tion included two distinct working memories: one corresponding to the
traditional short-term memory, and the other corresponding to an iconic
store. Accordingly, the condition elements in productions could refer to
either of these information sources, and the time parameters associated with
matches in the two stores differed.

By attempting to constrain the model-building process with the chrono-
metric data from very different domains, both Newell’s model and Klahr
and Wallace's model converged on a gross estimate of the time duration for
the basic production-system cycle time of between 10 and 100 ms. While this
may seem to be a fairly loose parameter estimate, it is important to note that
it is not 1 ms, nor is it 1000 ms. That is, if the production cycle is
constrained, even within these broad Iimits, then one can evaluate the
plausibility of particular production systems in terms of whether they
exhibit — within an order of magnitude—the same absolute as well as
relative temporal patterns as do the humans they are modeling.

Production Systems for Different Levels of Performance. Another use
of production systems by developmentalists has been the sequence-
of-models approach. The goal here is to produce a sequence of production-
system models for a specific task such that each model represents a different
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Jevel of performance. Once it has been demonstrated that the models can
indeed produce the appropriate behavior at each level of performance, then
one can examine the differences between successive models in order to infer
what a transition mechanism would have to accomplish.

Baylor and Gascon (1974) did this type of analysis in their investigation
of developmental differences in children's ability to do weight seriation.
They presented children between the ages of 6 and 12 years old with a task
in which the goal was to create an ordered series of identically appearing
objects having different weights. Children could make pair-wise compari-
sons of the objects by using 2 balance scale, but they could not get an
absolute measurement of an object’s weight. Baylor and Gascon observed
children’s behavior as they weighed different pairs of objects and attempted
to arrange them according to weight, From the sequence of children’s
pair-wise comparisons, Baylor and Gascon inferred a set of increasingly
effective strategies. Each strategy was formulated as a production system
having different collections of elementary components, Each of these
production systems. was implemented as a running computer program and
the program’s sequence of comparisons and the final outcomne provided a
good fit to individual children's sequences of object manipulations. -

Klahr and Siegler (1978) used production systems in a different way: to
take a soft-core information-processing model—one that had already
shown an excellent fit to the children’s performance—and extend it to a
production-system format so as to get a better idea of jts demands on
short-term memory and its dynamic properties. Siegler had previously
proposed an elegant analysis of rule sequences characterizing how children
(from 3 years old to 17 years old) make predictions in several domains
(Siegler, 1976, 1981), and the sequences were formulated as a series of
increasingly elaborated binary decision trees. By recasting the rules as
production systems, Klahr and Siegler were able to make a more precise
characterization of what develops than was afforded by just the decision-
tree representation. The following quotation from Klahr and Siegler (1978)
conveys the level of detail that was facilitated by the production-system
formulation.

We can compare the four models [production system versions of Siegler’s four
ueyle models”] at a finer level of analysis by looking at the implicit
requirements for encoding and comparing the important qualities in the
environment. Model I tests for sameness of difference in weight. Thus, it
requires an encoding process that cither directly encodes relative weight, or
encodes an absolute amount of each and then inputs those representations
into a comparison process. Whatever the form of the comparison process, it
must be able to produce not only a same-or-different symbol, but if there is
a difference, it must be able 10 keep track of which side is greater, Modet 11
requires the additjonal capacity to make these decisions about distance as well
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as weight. This might constitute a completely separate encoding and compar-
ison system for distance representations, or it might be the same system except
for the interface with the environment.

Model III needs no additional operators at this level. Thus, it differs from
Mode! II only in the way it utilizes information that is already accessible to
Model 1I. Model IV requires a much more powerful set of quantitative
operators than any of the preceding models. In order to determine refative
torque, it must first determine the absolute torque on each side of the scale,
and this in turn requires exact numerical representation of weight and
distance. In addition, the torque computation would require access to the
necessary arithmetic production systems to actually do the sum of products
calculations. (p. 80)

Representing the Immediate Task Context. One advantage of a pro-
duction-system formulation is that it facilitates the extension of a basic
model of the logical properties of a task to inciude the processing of verbal
instructions, encoding of the stimulus, keeping track of where the child is in
the overall task, and so on. For example, in their analysis of individual
subject protocols on the balance scale, Klahr and Siegler proposed some
models to account for some children’s idiosyncratic—but consistent—
response patterns. One of these models included not only the basic
productions for a variant of one of Siegler’s four models for balance scale
predictions, but also a lot of other knowledge about the task context:

The model represents, in addition to the child’s knowledge about how the
balance scale operates, her knowledge about the immediate experimental
context in which she is functioning. The trial-by-trial cycle during the training
phase comprises (1} observation of the static display, (2} prediction of the
outcomie, (3) observation of the outcome, (4) comparison of the outcome with
the prediction, and (5) revision if necessary of the criterion. . . . This model
utilizes, in one way or another, representation of knowledge about when and
how to encode the environment, which side has more weight or distance,
which side has a big weight or distance, what the current criterion value is,
what the scale is expected to do, what the scale actually did, whether the
prediction is yet to be made or has been made, and whether it is correct or
incorrect. (Klahr & Siegler, 1978, p. 89)

This kind of model raises two issues that might otherwise escape notice.
First, what kinds of knowledge are necessary to generate these different
encodings? It has long been known that surface variations in tasks can cause
wide variation in children’s performance—even on the tasks purported to
index developmental level, such as class inclusion (Klzhr & Wallace, 1972},
Production-system formulations avoid the arbitrary dichotomy between
performance demands and the so-called logical properties of a task, and
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force an unambiguous specification of all the processing necessary to
complete the task. Second, how much of the encoded knowledge (i.e., the
contents of working memory) must be available at any one moment? That
i¢, in order to do the task, how much working memory capacity is required?
Case (1986) addresses this issue informally in his proposed procedures for
quantifying tasks in terms of their demands on the Short-Term Storage
Space {STSS). However, without a clear and principled specification of the
grain-size and computational power of the routines that use the contents of
STSS, it is difficult to apply his demand-estimating procedure {0 a new
domain.

Multiple-Level Production Systems: From General Rules to Detailed
Encodings. Klahr and Wallace (1976) describe a model of children’s
performance on Piaget's conservation of quantity task. Their model
contains productions dealing with several different levels of knowledge. At
the highest level are productions that represent general conservation rules,
such as “If you know about an initial quantitative relation, and a transfor-
mation, then you know something about the resultant quantitative rela-
tion.” (See Klahr & Wallace, 1973, for an elucidation of these conservation
rules.) At the next level are productions representing pragmatic rules, such
as “If you want to compare two quantities, and you don’t know about any
prior comparisons, then quantify each of them.” At an even lower level are
rules that determine which of several quantification processes will actually
be used to encode the external display (e.g., subitizing, counting, or
estimation). Finally, at the lowest level, are productions for carrying out the
guantification process. These are the same productions that comprised the
systems described earlier in our discussion about matching production
systems to chronometric data.

Although 1 have described this system as if there were a hierarchy of
productions, there is only the flat structure of a collection of productions.
Each production simply checks for its conditions. If it fires, then it deposits
its results in working memory. The hierarchy emerges from the specific
condition elements in each production, which ensure that productions only
fire when the current context is relevant.

Nontransition Models: A Summary. These four instances by no means
exhaust the set of computer simulations of children’s thinking processes.
Rabinowitz, Grant, and Dingley (1987) summarize over a score of other
computer simulation models relevant to cognitive development, including
those that use non-production-system architectures, and including both
state and transition models. The production-system models include work on
seriation (Baylor, Gascon, Lemoyne, & Pother, 1973; Young, 1976) and
subtraction (Young & O'shea, 1981). Computer simulations based on
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schema architectures have been proposed in the area of arithmetic (Greeno,
Riley, & Gelman, 1984; Kintsch & Greeno, 1985; Riley, Greeno, & Heller,
1983) and language acquisition (Hill, 1983). Task-specific architectures
have been used to model children’s performance on addition (Ashcraft,
1987; Siegler, 1988), subtraction (Brown & VanLehn, 1982), and series
completion (Klahr & Wallace, 1970a). As Rabinowitz and colieagues
observe, only a handful of these models include self-modifying mecha-
nisms. Nevertheless, the underlying assumption in all of the computer
simulations is that by clarifying the nature of children’s thought at any
particular level of development, the requirements of a transition theory
become better defined.

Other Computational Modeis®

Production systems are not the only kind of computational model used to
model children’s thinking. In some cases, the researcher is not conforming
to any particular theoretical assumptions about cognitive architectures, but
still has a theory that is sufficiently complex that only a computational
model will enable him or her to derive predictions from it. In such cases the
researcher simply chooses to focus on the main data structures and
computational processes, and employs an atheoretical computational archi-
tecture in which to formulate and run the model.

Siegler and Shrager (1984) proposed such a model to account for an
unusually rich data set based on 4- and 5-year-old children’s performance
on simple addition problems (with sums less than 10). The model, shown in
Fig. 5.2, is based on two basic ideas: (a) Children will retrieve answers from
memory to problems that they are very certain about, and they will use
other strategies (such as counting on their fingers) when they are not so
sure; (b) Each possible problem (m + n) has a distribution of possible
responses associated with it (see Fig. 5.2a). Some problems (e.g., 1 + 2)
have very sharply peaked distributions, so that a single answer (3), is
strongly associated with the problem. Other problems have distributions of
possible answers that are bimodal (e.g., both 5 and 7 are likely to be
retrieved in response to the problem 3 + 4), or relatively flat (e.g., 5 + 3},
so that several answers are weakly associated with the problem. Siegler and
Shrager elaborated these rather general and intuitive notions into a com-
putational model that both acquired the distributions of associations with

“The computational medels described in this chapter are all variants of the symbol-oriented
approach to cognition, in contrast to the connectionist (or parallel distributed processing —
PDP - approach). In the penultimate section on “Constraints and Limitations,” I discuss seme
of the potential contributions of connectionist approaches to information processing in
children.
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training, and responded to problem -robes according to the current
distributions.

The model first attempts a direct retrieval, If the associative strength is
not sufficiently high, it goes on to the later stages in which some additional
representation (such as putting up fingers, or imaging the sets) is used. The
model is very successful at accounting for some otherwise puzzling relations
among several measures, including proportion of overt strategy use, error
rates, and mean solution times. Figure 5.2 depicts the model as a flow-
chart. Its computational implementation was written in a programming
language that was simply a straightforward conversion of the flow chart.
That is, the computational model was not constrained by any issues of
working memory, a recognize-act cycle, or the structure of semantic
memory.

Implicit Architectures

Soft-core information-processing approaches are not very explicit about the
structures or processes that are involved in thinking and development.
Case’s (1985, 1986) theory of cognitive development illustrates the use of
what I call implicit architectures. Case postulated figurative schemes, state
representations, problem representations, goals, executive control struc-
rures, and strategies in order to account for performance at specific levels of
development, and search, evaluation, retagging, and consolidation t0
account for development from one performance level to the next. More
recently, he has suggested that children can overcome the limitations of
short-term memory by acquiring “central conceptual structures” (Case &
Griffin, 1990).

Although Case made no explicit reference to symbol structures, his
central theoretical construct—what he called Short-Term Storage Space
(STSS) —implies that what occupies this space are symbols and symbol
structures. Furthermore, the STSS construct assumes that a limited-
capacity bottleneck in both storage capacity and computational power
accounts for the characteristic differences that many theorists associate with
distinct stages of cognitive development. In summary, Case’s theoretical
constructs appear to require the further assumption of a limited capacity
computational architecture that funnels its computational results through
the STSS.

Typical of soft-core approaches to information processing in children are
models that focus on the structure of thought, without explicit attention to
the nature of a computational systern that could support that abstract
structure. Such approaches, best exemplified by Piaget, have been recently
refined and extended by such theorists as Halford (1975) and Fischer (1980}.
For example, Fischer’s skill theory is cast entirely in terms of abstract
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structures with scant attention to processes. The transition processes that he
does discuss—substitution, focusing, compounding, differentiation, and
intercoordination—are presented in terms of their global characteristics,
and are not constrained by any explicit architecture.

COGNITIVE DEVELOPMENT OCCURS
VIA SELF-MODIFICATION OF THE
INFORMATION-PROCESSING SYSTEM

Regardless of its Jocation on the hard-soft dimension, every information-
processing approach is predicated on the assumption that cognitive devel-
opment can be characterized as self-modification. This includes accounts
ranging from Piaget’s original assertions about assimilation, accommoda-
tion, and the active construction of the environment, to proposals for
various kinds of structural reorganizations {e.g., Case, 1986; Fischer, 1980;
Halford, 1970; Kuhn, this volume), to interaction between performance
and learning (Siegler, 1987), to explicit mechanisms for self-modifying
computer models (Klahr, Langely, & Neches, 1987; Simon, Newelt, &
Klahr, 1991). This emphasis on self-modification does not deny the
importance of external influences such as direct instruction, modeling, and
the social context of learning and development. However, it underscores the
fact that whatever the external context, the information-processing system
itself must vitimately encode, store, index, and process that context. Here
too, soft-core approaches tend to leave this somewhat vague and implicit,
whereas hard-core approaches make specific proposals about some or all of
these processes. However, all information-processing approaches to devel-
opment acknowledge the fundamental importance of the capacity for
self-modification.

Hard-Core Approaches to Self-Modification

In discussing seif-modification, I do not make a distinction between
learning and development. Instead, 1 use the more neutral term change. (See
Klahr, 1989, for a discussion of whether self-modifying production systems
are best thought of as models of learning or of development.) It will be
understood that change is imposed by the system's own information-
processing mechanisms (hence self-modification). Learning is usually de-
fined as “the improvement of performance over time,” but such monoto-
nicity is not assumed here. Indeed, in many areas of development, the
measured trajectory is U-shaped, rather than monotone (Strauss, 1982),
and a theory of change must ultimately account for these cases.

Many general principles for change have been proposed in the develop-
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mental literature. These include: equilibration, encoding, efficiency, redun-
dancy elimination, search reduction, self-regulation, consistency detection,
and so on. However, they are not computational mechanisms. That is, they
do not include a specification of how information is encoded, stored,
accessed, and modified. It is one thing to assert that the cognitive system
seeks to avoid unnecessary processing; it is quite another to formulate a
computational model that actually does so.

Adoption of a production system architecture allows one to pose focused
questions about how broad principles might be implemented as specific
mechanisms. One way to do this is to assume the role of a designer of a
self-modifying production system, and consider the issues that must be
resolved in order to produce a theory of self-modification based on the
production-system architecture. The two primary questions are:

1. What are the basic change mechanisms that lead to new produc-
tions? Examples are generalization, discrimination, composition,
proceduralization, and strengthening.

2. What are the conditions under which these change mechanisms are
evoked: when an error is noted, when a rule is applied, when a goal
is achieved, or when a pattern is detected?

The recognize-act cycle offers three points at which change can have an
effect: A production system’s repertoire of behaviors can be changed by
affecting the outcome of (a) production matching, (b) conflict resolution,
and (¢) production application. Each of these is discussed in detail in
Neches, Langley, and Klahr (1987), and they are summarized here.

1. Change during the match. The most commonly used technique for
altering the set of applicable productions found by the matching process is
to add new productions to the set. One way to generate the new productions
is to modify the conditions of existing rules. Anderson, Kline, and Beasley
(1978) were the first to modify production system madels of human learning
via generalization and discrimination. The first mechanism creates a new
rule (or modifies an existing one) so that it is more general than an existing
rule, while retaining the same actions. The second mechanism — discrimi-
nation — creates a new rule (or modifies an existing one) so that it is less
general than an existing rule, while still retaining the same actions. The two
mechanisms lead to opposite results, although in most models they are not
inverses in terms of the conditions under which they are evoked.

2. Change during conflict resolution. Once a set of matching rule
instantiations has been found, a production-system architecture still must
make some determination about which instantiation(s) in that set will be
executed. Thus, conflict resolution offers another decision point in the
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recognize~act cycle where the behavior of the system can be affected.

The knowledge represented in a new production is essentially a hypoth-
esis about the correctness of that production. A self-modifying system must
maintain a balance between the need for feedback obtained by trying new
productions and the need for stable performance obtained by relying on
those productions that have proven themselves successful. This means that
the system must distinguish between rule applicability and rule desirability,
and be able to alter its selections as it discovers more about desirability.
Production systems have embodied a number of schemes for performing
conflict resolution, ranging from simple fixed orderings on the rules, to
various forms of weights or strengths, to complex schemes that are not
uniform across the entire set of productions, to no resolution at all.,

3. Changing conditions and actions. Various change mechanisms have
been proposed that lead to rules with new conditions and actions. Compo-
sition was originally proposed by Lewis {1978) to account for speedup as the
result of practice. This method combines two or more rules into a new rule
with the conditions and actions of the component rules. However, condi-
tions that are guaranteed to be met by one of the actions are not included.
For instance, composition of the two rules: AB — CD and DE — F would
produce the rule ABE — CDF.

Another mechanism for creating new rules is proceduralization (Neves &
Anderson, 1981). This involves constructing a very specific version of some
general rule, based on some instantiation of the rule that has been applied.
This method can be viewed as a form of discrimination learning because it
generates more specific variants of an existing rule. However, the condi-
tions for application tend to be quite different, and the use to which these
methods have been put have quite different flavors. For instance, discrim-
ination has been used almost exclusively to account for reducing search or
eliminating errors, whereas proceduralization has been used to account for
speedup effects and automatization.

A basic mechanism for change via chunking was initially proposed by
Rosenbloom and Newell {1982, 1987) and first used to explain the power
law of practice (the time to perform a task decreases as a power-law
function of the number of times the task has been performed). The learning
curves produced by their model are quite similar to those observed in a
broad range of learning tasks. The chunking mechanism and the production-
system architecture to support it has evolved into a major theoretical
statement about the nature of the human cognitive system. The system
(called Soar) represents the most fully elaborated candidate for a complete
cognitive theory—a “unified theory of cognition” as Newell {1990) calls it.
It would require a substantial extension of the present chapter to give a
comprehensive overview of Soar. However, because the Soar architecture



5. INFORMATION-PROGCESSING APPROAGHES 295

has been used in a recently developed theory of conservation acquisition to
be described later, I briefly summarize its main features here.

The Soar architecture is based on formulating all goal-oriented behavior
as search in problem spaces. A problem space consists of a set of states and
a set of operators that move between states. A goal is formulated as the task
of reaching one of a desired set of states from a specified initial state. Under
conditions of perfect knowledge, satisfying a goal involves starting at the
initial state and applying a sequence of operators that result in a desired
state being generated. Knowledge is represented as productions. When
knowledge is not perfect, the system may not know how to proceed. For
example, it may not know which of a set of operators should be applied to
the current state. When such an impasse occurs, Soar automatically
generates a subgoal to resolve the impasse. These subgoals are themselves
processed in additional problem spaces, possibly leading to further im-
passes. The overall structure ic one of a hierarchy of goals, with an
associated hierarchy of problem spaces. When a goal is terminated, the
problem solving that occurred within the goal is summarized in new
productions called chunks. If a situation similar to the one that created the
chunk ever occurs again, the chunk fires to prevent any impasse, leading to
more efficient problem solving.

Soar contains one assumption that is both parsimonious and radical. Itis
that all change is produced by a single mechanism: chunking. The chunking
mechanism forms productions out of the elements that led to the most
recent goal achievement. What was at first a search through a hierarchy of
subgoals becomes, after chunking, a single production that eliminates any
future search under the same conditions. Chunking is built into the Soar
architecture as an integral part of the production cycle. It is in continual
operation during performance ~there is no place at which the performance
productions are suspended so that a set of chunking productions can fire.
Chunking occurs at all levels of sub-goaling, and in all problem spaces.
(Soar operates entirely through search in problem spaces: Spaces for
encoding the environment, for applying operators, for selecting operators,
etc.) Chunking reduces processing by extending the knowledge base of the
system.

Simon et al. (1991) used Soar as the theoretical context in which to
formulate a computation model of how children acquire number conserva-
tion. Their model, called Q-Soar, simulates a training study (Gelman, 1982)
in which 3- and 4-year-old children were given a brief training session that
was sufficient to move them from the classical nonconserving behavior to
the ability to conserve small and large numbers. Q-Soar is designed to
satisfy several desirable features of computational models of cognitive
development: (a) It is based on a principled cognitive architecture (in this
case Newell’s Soar theory of cognition); (b) It is constrained by general
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regularities in the large empirical literature on number conservation; (¢) It
generates the same behavior as do the children in the specific training study
being modeled. That is, it starts out by being unable to pass number
conservation tasks, and then, based on the chunks that it forms during the
training study, it is able to pass post-tests that include both small and large
number conservation tests.

Q-Soar's design presumes that young children acquire number conservation
knowledge by measurement and comparison of values to determine the effects
of transformations on small collections of discrete objects. Having been
shown a transformation to a set of objects, the child first categorizes the
transformation and then initiates a conservation judgment about the trans-
formation’s effect. Ideally, categorization will identify the observed transfor-
mation as an instance of a larger class, with effects that are known to be
associaled (through chunking) with this class. If not, then pre- and post-
transformation values created by measurement processes are compared to
determine the effect of the transformation. The learning over this processing
creates new knowledge about this kind of transformation, which will become
available on future occurrences in similar contexts. Now the transformation’s
effects can be stated without the need for any empirical processing. In other
words, the necessity of the effects is recognized. (Simon et al., 199], p. 438)

Are Other Mechanisms Necessary? Although these processes — general-
izations, discrimination, composition, proceduralization, and chunking~
may be necessary components of a computational change theory, they may
not be sufficient. It is not yet clear whether they could account for the
observed differences between the strategies employed by experts and
novices (Hunter, 1968; Larkin, 1981; Lewis, 1981; Simon & Simon, 1978).
The reorganization necessary to get from novice to expert level may involve
much more than refinements in the rules governing when suboperations are
performed. Such refinements could presumably be produced by generali-
zation and discrimination mechanisms. However, producing a new proce-
dure requires the introduction of new operations. Those new operations
may require the introduction of novel elements or goals-—something that
generalization, discrimination, and composition and chunking are not
clearly able to do.

There are only two simulation studies in which change sequences, and the
intermediate procedures produced within them, have been directly ob-
served. Fortunately, a similar picture emerges from both studies. Anzai and
Simon (1979) examined a subject solving and re-solving a five-disk Tower of
Hanoi puzzle.® They found a number of changes in procedure that seemed

*This puzzle—widely used in psychological studies of problem solving—consists of &
“pyramid” of N disks stacked on one of three pegs. The disks are graduated in size, with the
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to require more than the processes listed previously. These included
eliminating moves that produced returns to previously visited problem
states, establishing subgoals to perform actions that eliminated barriers to
desired actions, and transforming partially specified goals (e.g., moving a
disk off a peg) into fully specified goals {e.g., moving the disk from the peg
to a specific other peg).

Neches (1981) traced procedure development in the command sequences
issued by expert users of 2 computer graphics editing system. He found a
pumber of changes that involved reordering operations and replanning
procedure segments on the basis of efficiency considerations. Subjects were
able to evaluate their own efficiency at accomplishing goals and to invent
new procedures to reach the same goals more efficiently. Based on these
studies, as well as his ohservations of children “inventing” a novel and
efficient strategy for doing simple addition, Neches (1987) created a
self-modifying production system called HPM (for Heuristic Procedure
Modification). Although these studies just cited deal with adult subjects,
the self-modifying processes used by the adults are very likely to be some of
the same ones involved in developmental changes.

Metacognition and information-
Processing Approaches

The important point in these examples is that change appears to involve
reasoning on the basis of knowledge about the structure of procedures in
general, and the semantics of a given procedure in particular. In each
example, procedures were modified through the construction of novel
elements rather than through simple deletions, additions, or combinations
of existing elements.

Beyond the hard-core approaches, this kind of self-analysis of procedures
and their byproducts is usually treated as an issue of “metacognition.” As
Kuhn (this volume) points out, hard-core information-processing ap-
proaches have not had a lot to say about metacognition, or reflection, or
consciousness, at least not directly. However, HPM is one clear instantia-
tion of the notion, and it is also captured to some extent the way that Soar
forms chunks out of the goal trace and local context for satisfied subgoals.

Perhaps the most elaborate consideration of metacognitive processing
appears in the “time line processing” sketched by Wallace, Klahr, and Bluff

S —

largest disk on the bottom of the stack. The goal is to move the stack from the initial peg to
a goal peg, subject to two constraints: {a} only one disk can be moved at a time; (b} a larger
disk can never be placed on a sinaller disk. The minimum number of moves required to move
the N-disk stack from one peg o anotheris 2 ~ 1. Thus a 5-disk problsm requires a minimum
of 31 moves. A three-disk version, adapted for use with preschoolers by Kiahr and Robinson
(1981} is described later in this chapter.
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(1987). Wallace et al. described a plan for a self-modifying production
system called BAIRN (a Scottish term for child) in which a continuous
record of the initial and final conditions of production firings is kept in a
time line that provides a sequential record of processing activity. BAIRN
learns about the world by processing the information in the time line.

At first, this information is very primitive, being based [on] only the results of
BAIRN's innate endowment of primitive perceptual and motor nodes. As. . .
[BAIRN's knowledge of the world] gets more elaborated, so does the
information available for processing the time line, as richer and more
powerful nodes are agded to long-term memory, (Wallace et al., 1987, pp.
360-361)

The general idea in systems like BAIRN, Soar, or HPM is to include
mechanisms that enable the system to improve its performance by accessing
information about the context and effectiveness of its earlier performance.
These mechanisms allow the systems {0 exhibit the type of behavior that,
when seen in humans, is classified as metacognitive. .

To the best of my knowledge, only one developmentalist has made-the
explicit mapping between an information-processing model and metacogni-
tion. Siegler's (1989) model of children’s strategy choice in multiplication
exhibits the emergent property of a rational choice of an efficient and
effective strategy. In that model, strategy choices about whether to retrieve
the answer to a problem from memory or to calculate the result are made
without any rational calculation of the advantages and disadvantages of
each strategy. One of the most important features of Siegler’s model is that:

it indicates in detail how a self-regulatory process could operate. The need for
self-regulatory processes —executive processes, metacomponents, autono-
mous regulation, and so on has been persuasively argued previously, but the
way in which they accomplish their function has not been clearly elaborated.
The present mechanism both resembles and differs from previous suggestions,
The mechanism resembles Piagetian and Vygotskian suggestions in that the
child’s own activity determines future strategy choices. Tt differs from these
and numerous other approaches, however, in that the seif-regulation does not
depend on reflection or on any other separate governmental process. Instead,
it is part and parcel of the system’s basic retrieval mechanism. (Siegler, 1988,
p. 272)

Summary: Production Systems as Frameworks
for Cognitive Developmental Theory

In this section I provide a brief overview of issues that arise in applying
production-system architectures to the areas of learning and development.
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The framework rests on three fundamental premises of the hard-core
approach:

1. The structure of production-system architectures provides insight into
the nature of the human information-processing system architecture, This
premise derives from observations about similarities in terms of both
structural organization and behavioral properties, Structurally, production
systems provide a plausible characterization of the relations between
long-term memory and working memory, and about the interaction be-
tween procedural and declarative knowledge. Behaviorally, strong analo-
gies can be seen between humans and production systems with respect to
their abilities to mix goal-driven and event-driven processes, and with their
tendency to process information in parallel at the recognition level and
serially at higher cognitive levels.

2. Change is a fundamental aspect of intelligence; we cannot say that we
fully understand cognition until we have a model that accounts for its
development., The first 20 years of information-processing psychology
devoted scant attention to the problems of how to represent change
processes, other than to place them on an agenda for future work. Indeed,
almost all of the information-processing approaches to developmental
issues followed the two-step strategy outlined in the Simon quotation that
opened this chapter: First, construct the performance model, and then
follow it with a change model that operates on the performance model. In
recent years, as researchers have finally started to work seriously on the
change process, they have begun to formulate models that inextricably link
performance and change. Self-modifying production systems are one such
example of this linkage.

3. All information-processing system architectures, whether human or
artificial, must obey certain constraints in order to facilitate change. It is
these constraints that give rise to the seemingly complex particulars of
individual production-system architectures. Thus, following from our
second premise, an understanding of production-system models of change
is a step toward understanding the nature of human development and
learning.

The Computer's Role in Simulation Models

Given the centrality of computer simulation to hard-core information
processing, it may be useful to address a few commen misunderstandings
about the role of the computer in psychological theory. First of all, it is
important to distinguish between the theoretical content of a program that
runs on a computer and the psychological relevance of the computer itself.
Hard-core information-processing theories are sufficiently complex that it
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is necessary to run them on a computer in order to explore their implica-
tions. However, this does not imply that the theory bears any resemblance
to the computer on which it runs. Meteorologists who run computer
simulations of hurricanes do not believe that the atmosphere works like a
computer. Furthermore, the same theory could be implemented on com-
puters having radically different underlying architectures and mechanisms.
Failure to make the distinction between theory and computer leads to the
common misconception that information-processing approaches can be
arranged along a dimension of “how seriously they take the computer as a
model” (Miller, 1983, p. 250). It would be counterproductive to take the
computer at all seriously as a model for cognitive development, because the
underlying computer does not undergo the necessary self-modification.

The first computer simulations of developmental phenomena were in-
tended to explain distinct performance levels along a developmental trajec-
tory. These early models did not contain any self-modification mechanisms.
Instead, they were intended to explicate the complex requirements for a
self-modifying system (an explication entirely absent from Genevan ac-
counts of equilibration). Critics of these early simulation models (Beilin,
1983: Brown, 1982) faulted them for their lack of attention to issues of
transition and change. However, the critics failed to appreciate the principal
virtue of computational models of distinct developmental levels: that they
sharpened the question of self-modification in a way that is simply
unattainable in more traditional verbal formulations of developmental
theories. In the past few years, several self-modifying systems have been
created. These systems—some of which were described in the previous
section —exhibit the same performance that, when observed in humans, has
been labeled as either learning or development.

A similar misunderstanding of the role of the computer in hard-core
information-processing models may have lead to Brown’s (1982) widely
quoted (but misdirected) criticism that “A system that cannot grow, or show
adaptive modification to a changing environment, is a strange metaphor for
human thought processes which are constantly changing over the life span
of an individual” {p. 100). I agree, but as evidenced by the systems described
earlier, the criticism does not apply here: we have some hard-core infor-
mation-processing approaches that propose very explicit mechanisms for
“adaptive modification to a changing environment.”

The hard-core information-processing approaches are serious, not about
the similarity between humans and computers, but rather about the extent
to which intelligent behavior —and its development —can be accounted for
by a symbol-processing device that is manifested in the physical world. The
strong postulate for hard-core information-processing is that both com-
puters and humans are members of the class of “physical symbol systems”
(Newell, 1980), and that some of the theoretical constructs and insights that
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have come out of computer science are relevant for cognitive developmental
theory. One such insight is what Palmer and Kimchi (1986) call the recursive
decomposition assumption: Any nonprimitive process can be specified
more fully at a lower level by decomposing it into a set of subcomponents
and specifying the temporal and informational flows among the subcom-
ponents. This is a good example of how abstract ideas from computer
science have contributed to hard-core information processing: “It is one of
the foundation stones of computer science that a relatively small set of
elementary processes suffices to produce the full generality of information
processing” (Newell & Simon, 1972, p. 29). An important consequence of
decomposition is that

.. . the resulting component operations are not only quantitatively simpler
than the initial one, but quelitatively different from it. . . . Thus we see that
higher level information-processing descriptions sometimes contain emergent
properties that lower level descriptions do not. It is the organization of the
system specified by the flow relations among the lower level components that
gives rise to these properties. (Palmer & Kimchi, 1986, pp. 52-33)

The importance of emergent properties cannot be overemphasized, for it
provides the only route to explaining how intelligence —be it in humans or
machines ~can be exhibited by systems comprised of unintelligent under-
lying components - be they synapses or silicon. Even if one defines under-
lying components at a much higher level —such as production systems or
networks of activated nodes, emergent properties still emerge, for that is the
nature of complex systems.

The emergent property notion provides the key to my belief that
hard-core information-processing approaches provide a general frame-
work, particular concepts, and formal languages that make possible the
formulation of powerful theories of cognitive development. The funda-
mental challenge is to account for the emergence of intelligence. Intelligence
must develop from the innate kernel. The intelligence in the kernel, and in
its self-modification processes, will be an emergent property of the organi-
zation of elementary {unintelligent) mechanisms for performance, learning,
and development. Thus, the issue is not “sacrificing explanatory breadth for
explanatory precision” (Kuhn, this volume), but rather achieving explana-
tory breadth on the basis of the emergent properties revealed by explanatory
precision.

USING HIGHLY DETAILED ANALYSES
OF THE ENVIRONMENT FACING THE CHIL.D
ON SPECIFIC TASKS

The realization that investigation of psychological processes presupposes a
highly developed, abstract analysis of the task and available constraints has
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perhaps been the major advance in psychology in the last several decades.
(Kellman, 1988, p. 268)

Kellman’s observation echoes Simon’s (1969, Chap. 2) well-known par-
able of the ant, whose complex path toward a goal was characterized as a
set of simple mechanisms encountering a complex and irregular environ-
ment. Simon’s claim was that, in the human as well as in the ant, much of
the apparent complexity of behavior is a function of the complexity of the
environment rather than of the cognitive system. This insight is particularly
important for developmentalists, for it demands that our explanations for
changes in behavior include an account of changes in both the organism and
the environment in which it is embedded.

All of the methodological practices to be described in the remainder of
this chapter start with a careful task analysis. Both chronometric techniques
and error analysis require at least a rudimentary analysis of the task
environment. In addition, there are some information-processing ap-
proaches in which complex and detailed task analysis plays a central role,
even when neither error analysis nor chronometrics are used. In a sense,
these approaches consist of nothing but task analysis. While such work is
typically preliminary to further work in either error analysis or computer
simulation (or both), it is often useful for its own sake, as it clarifies the
nature of the tasks facing children.

Klahr and Wallace’s (1970b) task analysis of class inclusion is an early
example of such a formal characterization of an important developmental
task. Their goal was to illustrate how a common “Piagetian experimental
task” (i.e., the full set of test items that are typically given when assessing
class inclusion competence, including finding some objects, finding all
objects, comparing subsets of objects, etc.) involved the coordination of
several more basic information processes. They proposed a network of
interrelated processes—similar to Gagne’s (1968) learning hierarchies—in
which some processes had common subcomponents, while others were
relatively independent. Klahr and Wallace’s analysis enabled them to
explain how surface variations in a task could invoke different processes,
that, in turn, would have profound effects on performance, even though the
underlying formal logic of the task remained invariant.

In the area of children’s counting, Greeno, Riley, and Gelman (1984)
formulated a model for characterizing children’s competence, Their model
is much more complex than the early Klahr and Wallace analysis of
classification, but it is fundamentally similar with respect to being a formal
task analysis whose primary goal is to elucidate the relations among a set of
underlying components,

Klahr and Carver {1988) used a formal task analysis to design an
instructional unit to teach elementary school children how to debug
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computer programs. The unit was designed to be inserted in the normal
curriculum for teaching a graphics programming language. Children tend to
write programs that are “buggy,” that is, programs in which the desired
picture does not match the picture drawn by the child’s program. Children
typically fail to acquire very effective procedures for debugging programs,
so Klahr and Carver attempted to teach the necessary skills explicitly. First
they analyzed the components of debugging into four distinct phases.

1. Bug identification—the child generates a description of the discrep-
ancy between the program plan (e.g., what the desired picture should look
like) and the program output (e.g., what the program actually drew). Based
on the discrepancy description, propose specific types of bugs that might be
responsible for the discrepancy.

2. Program representation-the child articulates the structure of the
program in order to investigate the probable location of the buggy
command in the program listing.

3. Bug location —the child uses the cues gathered in the first two phases
to examine the program in order to locate the alleged bug.

4. Bug correction —~the child examines the program plan to determine the
appropriate correction, replaces the bug with the correction in the program,
and then reevaluates the program.

Based on the formal task analysis, Klahr and Carver then created a
production system mode! that could actually do the debugging, and they
used the productions in the model to specify a set of cognitive objectives for
insertion in a programming curriculum (Carver, 1986). In addition to the
instructional elements, their debugging model provided a framework for
assessment of debugging skills, for creation of transfer tasks, and for
evaluation of transfer. Thus, the entire instructional intervention (which
was very successful in teaching debugging skills) was based on the initial
task analysis.

USING FORMAL NOTATIONAL SCHEMES
FOR EXPRESSING COMPLEX,
DYNAMIC SYSTEMS

The use of computer-simulation languages is the sine qua non of hard-core
information processing. Nevertheless, there are several lesser degrees of
formalization that mark the soft-core methods, including such devices as
scripts, frames, flow charts, tree diagrams, and pseudo-programming
languages. The attractive property of any of these formal notations is that
they tend to render explicit what may have only been implicit, and they
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frequently eliminate buried inconsistencies. That is, compared to verbal
statements of theoretical concepts and mechanisms, each of these notations
offers increased precision and decreased ambiguity,

Flow charts are perhaps the most common type of formal notation used
by information-processing psychologists. For example, Sternberg and
Rifkin (1979) used a single flow chart to represent four distinct models of
analogical reasoning. Their depiction clearly indicates how the models are
related and what parameters are associated with each component of each
model,

Another type of formal notation commonly used in research on children’s
comprehension of stories is the story grammar (Mandler & Johnson, 1977,
Stein & Glenn, 1979). Nelson has analyzed children's event representations
in terms of scripts (Nelson & Gruendel, 1981). Mandler (1983) provides a
comprehensive summary of how these kinds of representations have been
used in developmental theory. In both areas, the underlying theoretical
construct is the schema: an organized knowledge structure containing both
fixed and variable components. The fixed components bear relations that
are characteristic of the general properties of the situation represented by
the schema, and the variable components represent the specific instance that
is currently being processed. For example, a story grammar would have
components for the main protagonist, the goal or intent of the protagonist,
an obstacle or threat to the achievement of the goal, and the resolution of
the threat. For event representations, children appear to have scripts for
common activitis such as going to a restaurant, in which the fixed
components include driving, parking, ordering, eating, and paying, and the
variable components might include the order in which the events occur
(e.g., pay before or after eating), the particular things ordered, the seating
arrangement, and so on.

As with any other of the constructs used in information-processing
approaches, the schema construct can be used in a variety of ways, and with
varying degrees of ambiguity (Mackworth, 1987). However, it is possible to
be quite specific about what one means by the term. For example, Hill and
Arbib (1984) attempted to clarify some of the different senses in which the
term schema has been used, and they go on to describe a schema-based
computational model of language acquisition.

Given this range of notational options for describing information-
processing theories, what criteria should be used in choosing among them?
This issue is discussed at length by Klahr and Siegler (1978). They suggest
that the following four criteria be used in choosing a representation;

1. Is the representation sufficient to account for behavior? Does it
have a clear mapping onto the empirical base for which it is
supposed to account?
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2. Is the representation amenable to multiple-level analyses? Is it easy
to aggregate and disaggregate the grain of explanation? That is, can
one easily go from a characterization of the average behavior of a
group of children to more specific models that capture individual
performance? For the design of well-controlled experimments or
curriculum design, the representation will have to be stated in terms
of averages across many subjects; it must be a modal form. For
detailed study of individual strategies and component processes, it
must be capable of disaggregation without drastic revision.

3. Is the representation consistent with well-established processing
constraints?

4. Does the representation have “developmental tractability” {Klahr &
Wallace, 1970a)? That is, does it allow the theorist to state both
early and later forms of competence and provide an easy interpre-
tation of each model as both a precursor and successor of other
models in a developmental sequence?

What about mathematical models of developmental phenomena? Should
they be included in the set of formal notational schemes that signal soft-core
information processing? The situation is not straightforward. On the one
hand, mathematical modeling certainly meets the criteria of formalization
and precision. Indeed, the following argument for mathematical models
could equally well be made for computational models.

It is precisely because the phenomena are so complex that we must have
mathematics. Even in relatively simple (one might suppose) areas of psychol-
ogy, a reader of the literature can easily be led down the primrose path
through verbal argument. The logic seems impeccable. However, when the
psychological principles on which the theory is based are put into mathe-
matical form, the stated predictions may fail to follow at all. Moreover, just
as in other sciences, the predictions are often rendered more testable by being
derived as mathematical propositions or theorems. (Townsend & Kadlec,
1990, p. 227)

Nevertheless, most of the developmentally relevant mathematical mod-
eling has focused on perception, rather than cognition. Those models that
have addressed higher order cognitive developmental issues have character-
ized information processing at a very abstract level: in terms of states and
transition probabilities, rather than in terms of structural organization and
processes that operate on that structure (e.g., Brainerd's, 1987, Markov
models of memory processes). As Gregg and Simon (1967) demonstrated
very clearly with respect to stochastic models of concept learning, most of
the interesting psychological assumptions in such models are buried in the
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text surrounding the mathematics. They point out that “the accurate
predictions of fine-grain statistics that have been achieved with [stochastic
theories] must be interpreted as validations of the laws of probability rather
than of the psychological assumptions of the theories” {p. 275).

To cite a specific example of this general problem from the develop-
mental literature, Wilkinson and Haines (1987) used Markov learning
models to propose some novel answers to the important question of how
children assemble simple component skills into reliable strategies. However,
they couched their analysis in terms of the probabilities of moving between
abstract states, while their discussion in the text was rife with undefined
processes whereby the child “discovers,” “adopts,” “retains,” “invokes,”
“moves,” “prefers,” “abandons,” or “reverts.” As is often the case in the use
of mathematical models, the formalism of the mathematics obscures the
informality of the underlying theory. Perhaps this is the reason why
mathematical modeling has not played a central role in information-
processing approaches to cognitive development.

MEASURING THE TIME-COURSE
OF COGNITIVE PROCESSING

Many information-processing psychology studies of children’s thinking ask
questions about the rates at which different mental processes occur, When
the mental processes of interest have durations of seconds or fractions of
seconds, the methodology associated with their analysis is called chrono-
metric analysis. The focus in these studies is on how a specific mental
algorithm or strategy is organized and executed, When the focus shifts from
how these strategies work to where they came from in the first place, it
becomes necessary to study children’s performance repeatedly over several
days or weeks or perhaps months, seeking characteristic patterns that signal
changes in the organization and content of underlying processes. Medium-
duration studies of this type are called microgenetic studies. In the next two
sections I describe each kind of methodology.

Chronometric Analysis

Chronometric analysis is based on three assumptions. First, there is a set of
distinct, separable processes that underlie the behavior under investigation.
Second, the particular process of interest can be isolated, via a task analysis,
such that experimental manipulations can systematically induce the system
to increase or decrease the number of executions of the focal process, The
third assumption is that the experimental manipulations affect only the
number of executions of the focal process, and nothing else about that
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process or the total set of processes in which it is embedded. (For a
thorough discussion of the history and methodology of chronometric
studies, primarily with adults, see Chase, 1978.)

Chronometric analysis can be used at several levels of aggregation. At the
smallest grain sizes, it is used to obtain estimates of the mean time to
execute underlying processes. At larger grain sizes, it is used to determine
the overall organization of a cognitive process comprised of smaller
components. In the following descriptions, I start with examples of the finer
grained use of chronometric analysis. Then I describe a few examples of
chronometrics at a more aggregate level.

Memory Scanning. The use of chronometric methods with children is
exemplified by Keating and Bobbit’s (1978} extension of Sternberg’s (1966)
memory-scanning paradigm. The question of interest here is how people
search their short-term memory. The basic procedure is to present subjects
with a set of several digits, followed by a probe digit. The subject’s task is
to decide whether the probe digit was in the original set. The main
independent variable is the size of the original set. Reaction time is
measured from the onset of the probe until the subject responds. In
addition to the general assumptions listed above, the paradigm assumes that
the items in the set are stored in some kind of passive buffer, and that there
is an active process that sequentially compares the probe with each of the
items stored in the buffer. The empirical question is how long each
comparison (and move to the next item) takes. Sternberg had discovered
that when adults were attempting to decide whether a probe item was a
member of a previously stored list, they could compare the probe item to
the list items at the rate of approximately 20 items per sec (or 50 msec per
item). Furthermore, adults appear to use an exhaustive search: They go
through the entire list regardless of whether or not a match is found along
the way. Keating and Bobbit found that 9-year-olds took almost twice as
long per item as 17-year-olds.

Other Basic Cognitive Processes. Such age differences in processing
rates are found in almost ali chronometric studies. Indeed, as Kail {1991b)
noted in his review of 72 studies comparing processing speed in children and
adults: “Age differences in performance on speeded tasks are large and
remarkably consistent” (p. 490). Kail (1988) suggested the following expla-
nation for these differences:

One hypothesis is that age differences in processing time reflects changes that
are specific to particular processes, tasks, or domains. For example, age
differences in processing speed may reflect the developmental acquisition of
more efficient strategies for task solution. . . . A second hypothesis is that age
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differences in processing speed are due to more general developmental
change. For example, in information-processing theories, performance on
many cognitive tasks requires processing resources or attention. ... in-
creasing resources typically increases speed of processing, even when all other
factors are held constant. Therefore, age-related increases in the amount of
processing resources could produce age-related increases in processing speed.
(pp. 339-340)

Kail (1988) reasoned that one could distinguish between the two hypoth-
eses by examining the general shape of the functions that plot age versus
processing speed for a variety of tasks. “Specifically, if some central
mechanism changes monotonically with age, and if the function that relates
decreases in processing time to changes in this central mechanism has the
same form for two or more processes, the form of the growth function
should be the same for those processes” (p. 340). His work represents an
elegant example of the extent to which chronometric analysis can illuminate
important developmental questions.

For each of the 15 ages from 8 years to 22 years (e.g., 8-year-olds,
9-year-olds, and so forth), Kail estimated the processing rate for five
different tasks that involve very basic mental processes. For each task, Kail
arranged the stimulus materials so that the process in question had to be
executed repeatedly as a function of the stimulus. This enabled him to
estimate the duration of the underlying focal process. The five tasks, and
the resulting rates were:

1. Visual search. The stimuli were the digits 1 to 9. First a single digit -
the study digit —appeared on a computer screen. Then, after a short delay,
a set of one to five digits appeared. This was the probe set. The subject’s
task was to signal, as fast as possible, whether or not the probe set
contained the study digit. Note that in this task the subject had to match a
digit from memory (the study digit) with each of the digits in an external
display. The processing time per item ranged from about 80 msec for the
8-year-olds to about 25 msec for the adults. (See Fig. 5.3 for the results
from this and the other four Kail tasks.)

2. Memory search. Here Kail used the standard Sternberg (1966) memory
scanning paradigm described earlier, with the same kind of materials as in
the Visual Search task. For this task, each trial started with the subject
learning a set of digits (set size 1, 3, or 5). Once the initial set had been
studied, a probe digit was presented, and the subject had to indicate if the
probe was a member of the study set. Here, the single digit in the external
display had to be matched against a mental representation of the study set,
The processing time per item ranged from about 150 msec for the
8-year-olds to about 50 msec for the adults.
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3. Menta! rotation. In this task, subjects were presented with a pair of
Jetters in any of six different orientations, and they had to decide whether
the letters were identical or mirror images. At all ages, reaction time
increased with increasing orientation, and the slope of the reaction time
versus orientation function decreased with age. Mean slopes were 4.5
msec/degree for children, 3.3 for adolescents, and 3.0 for aduits.

4. Name retrieval (reported originally in Kail, 1986). The purpose of this
task was to estimate the time necessary to retrieve the name of something,
given a picture of it. Stimuli were pairs of pictures of common objects in
two formats (e.g., an open umbrella or a closed umbrella, a peeled or an
unpeeled banana). These pictures were combined into three different kinds
of pairings: (a) pairs that were identical physically and in name {e.g., a pair
of open umbrellas); (b) pairs that were identical in name only {e.g., an open
and a closed umbrella); and (c) pairs that were different both physically and
in name (e.g., an umbrella and a banana). Subjects were presented with a
series of these different pairs, and given two types of instruction. In one
condition, the subjects had to decide whether the pairs of objects had the
same name, and in the other they had to decide if they were physically
identical. By subtracting the response times on those trials that required the
subjects to retrieve the name of the object from the response times on those
trials that required only a physical match, Kail was able to estimate the
mean name retrieval time for each of the age groups studied. It ranged from
approximately 300 msec for the youngest children to about 150 msec for
adults.

5. Mental addition. Subjects were presented with problems of the form
m + n = k, where | = m, n = 9. Problems with n = m were not used. For
half the problems the sum was correct and for the other half it was
incorrect. Subjects responded by pressing either of two response buttons.
Kail based his analysis of subject’s response times on Asheraft’s (1987)
associative retrieval model in which solution of these problems involves
entering an arithmetic network at nodes corresponding to m and n, then
searching for the intersection at which is stored the sum. The model assumes
that memory search time increases as a function of the square of the sum,
and that overall response time is a function of whether the equationm -+ n
= k is true or false. Accordingly, Kail estimated the memory search rate by
using multiple regression to fit the median RTs at each age to the function

RT =B(m+nP +t+k

where B is the memory search rate, and t is the additional amount of time
to respond “false.” Memory search rates ranged from approximately 7.5 sec
per squared increment for the 8- and 9-year-olds to less than 3 sec for the
adults,
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Having determined the processing time per item for each age group on
each of the five tasks, Kail then determined the relations between processing
time and age for each task. Not surprisingly, for all of the tasks, there was
a decrease in processing time with age. But more important, the best-fitting
function for processing time versus age was an exponential decay function
that could be fit by a single decay parameter (see Fig. 5.3). Furthermore,
these exponential decay curves are found in speeded perceptual-motor tasks
(Kail, 1991a}, as well as the cognitive tasks described here. Kail interpreted
these results by positing an increasing amount of common, nonspecific
processing resources that become available to children as they develop:
“Common growth functions are found because the increased resources yield
a constant increment in speeded performance across tasks” (p. 362).

Kail’s work represents an interesting mix of the hard-soft dimensions that
I have been using to characterize the field. With respect to experimental
methodology, it is about as hard as it can get. The experiments are very
clean and the analysis is deeply quantitative. However, with respect to
theoretical assumptions, it is at the soft end of the spectrum: It posits no
clear mechanism through which the vague construct of “processing resourc-
es” might be realized. Nevertheless, these results provide an 1mpm1ant
empirical constraint for such models.

In addition to the three standard assumptions-listed earlier in this
section —underlying ¢hronometric analysis, Kail's approach is based on a
fourth: that the organization of the strategy for accomplishing a task
remains constant across ages, and only the speed of processmg changes
That is, Kail assumed that children’s processes for memory scanning were
organized in the same way as adults’. Then he proceeded to estirnate some
of the critical parameters of these processes and to chart their develop-
mental course. However, in many cases, rather than presuming that the
organization is known and age-invariant, the researcher’s goal is to deter-
mine just what that organization is at different ages or skill levels.
Chronometric analysis can be applied to this situation at a somewhat
coarser grain size. The focus is not so much on individual processing rates
as on the overall temporal pattern of responses generated by different
cognitive strategies. The next three examples illustrate this kind of coarser
grained use of chronometric analysis.

Mental Arithmetic. One of the best-known studies using chronometric
analysis with children was Groen and Parkman’s (1972) analysis of how first
graders solved simple addition problems. Groen and Parkman proposed
several alternative models of how these children might add two single digit
numbers to produce their sum. One plausible model would be for the child
to represent the first argument, then the second argument, and then count
out the sum. The actual representation could be external (on fingers or
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FIG. 53. Developmaental functions for rates of mental rotation (data from
Kall, 1988, Experiment 2 and from Kail, 1986, Experiments 1 and 2), name
retrieval {frorn Kail, 1986, Experiment 1), memory saarch {from Kall, 1988,
Experiments 1 and 2), visual search (from Kall, 1988, Experiment 1), and
mental addition {from Kall, 1988, Experiment 2). Rate of mental rotation is
estimated by the slope of the function refating response time to the
orientation of the stimuius. Name retrieval |s estimated by the difference
between times {or name and physical matching. Visual search Is estimated
by ithe slope of the function relating response tima to the size of the
search set. Memory search is estimated by the slope of tha function
relating response time to the size of the study set. Retrleval of sums on
the mental addition task ls estimated from the slope of the function
relating response time to the sum squared. The solid line depicts values
derlved from the bast-fitting t1.parameter expanantial function {l.e., one in
which the decay parametsr, ¢, Is the same for &l! flve processes; from Kall,
1988).
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counting blocks) or internal. In either case, the expected time to compute
the sum would be proportional to the sum of the two numbers. Another
strategy might be to count on from the first number: start with the first, and
count as many steps as the second. A child following this strategy on the
problem 3 + 5, would, in effect, say to herself “3 -+ 5; that’s 3, 4, 5, 6, 7,
8—the answer is 8.” Response times for this strategy would be proportional
to the value of the second number in the pair of addends. Yet another
strategy is the min model. This is like counting on, except that the child
always starts counting from the Jarger of the two arguments, thereby
minimizing the number of steps (e.g., for both 3 + 5, and 5 + 3, the child
would start with the 5, and increment it 3 times). Times for this strategy are
proportional to the minimum of the two arguments.

Reasoning in this way, Groen and Parkman predicted a pattern of
reaction times as a function of several relations among the two addends
{sum, difference, min, max). Based on their analysis of mean reaction times
across subjects and trials, Groen and Parkman concluded that the min
model provided the best fit to their data. (Even at the time, there were some
exceptions to this general result, and further analysis by Siegler & Jenkins,
1989 —described later —revealed a much more complex picture. Neverthe-
less, the initial Groen and Parkman work still stands as a pioneering effort
in chronometric analysis of children’s performance.)

Transitive Reasoning. *Bill is taller than Sue and shorter than Sally. Is
Sally shorter than Sue?” How do children solve this kind of transitive
inference problem? Ever since Burt (1919) first explored children's devel-
oping ability to deal with transitive relations, developmentalists have been
interested in this question. One specific question that arises in this context
is how the individual premises (X is taller than Y) are stored and accessed.
There are two distinct possibilities. One alternative is that children construct
an integrated representation of the individual items as the pairwise relations
are presented. Then, when a probe is presented, they read off the relative
sizes of the probe items from the integrated display. Another alternative is
that children store the individual pairs, and at probe time they link them
together to produce the answer.

Trabasso and his colleagues used chronometric analysis to decide the
issue (Trabasso, 1975; Trabasso, Riley, & Wilson, 1975). They reasoned
that if children use an integrated representation, then their response times
should show the same pattern for the internally stored representation as for
an external visual display of the same ordered set of objects. In particular,
the pattern should exhibit the familiar symbolic distance effect, in which it
takes less time to determine the ordering for two widely separated objects,
than to decide the ordering for two adjacent items. On the other hand, if
children are connecting the premises at probe time, then the closer objects
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should take less time to resolve (because there are fewer connections to
make). Trabasso and his colleagues investigated this problem by using
six-term problems (the example given at the opening of the previous
paragraph was a three-term problem). They presented children with re-
peated exposure {0 all adjacent pairs (i.e., AB, BC, CD, DE, EP), in both
orders (e.g., A is larger than B; B is smaller than A), appropriately
randomized, until they met a learning criterion for each adjacent pair. Then
they presented probe questions about all possible pairs and measured
response times. The probes included pairs of items (in both orders; ie.,
both BF and FB) that were zero inferential steps apart (i.e., the adjacent
pairs used in the training lists, such as BC), pairs that were one inferential
step apart (¢.8., BD), and pairs that were two inferential steps apart (-8
EB). The subjects included a group of 6-year-olds, a group of 9-year-olds,
and a group of adults.

The resulting reaction time patterns were {with minor exceptions) very
consistent: Reaction time was inversely related to the number of inferential
steps. That is, pairs that were very far apart produced faster responses than
the adjacent pairs on which subjects had been trained. This was true at all
ages (as expected, older subjects were faster than younger subjects), and for
all display conditions (verbally presented pairs, visually presented pairs, and
an integrated visual display of all objects.) By using this kind of chrono-
metric analysis in a series of related studies with a variety of subject
populations, Trabasso (1975) was able to make some very strong statements
about an important mnemonic skill:

Our analysis suggests that children ranging in age from 4 to 10 years-of-age,
mentally retarded adolescents and college students use similar strategies of
constructing linear orders from pairwise, ordered information, store this
representation in memory and use it to make comparative relations on all
members in the array. . . . In short, we believe that we have provided a
mechanism for information integration and inference-making that cuts acToss
a variety of situations and tasks. (pp. 167-168)

Elementary Quantification: Subitizing and Counting. Our final ex-
ample represents a mix of the two kinds of chronometric analysis described
here. In this case, the goals of the research are twofold: () to determine
whether or not children and adults use the same general strategies and (b) to
estimate the rates of the components of those strategies. Chi and Klahr
(1975) addressed the question of how kindergarten children and adults
quantify (i.e., generate an internal quantitative symbol for) displays of
discrete objects. One quantification strategy might be simply to count each
object. The processing time for counting should be a linear function of the
number of objects being counted. On the other hand, the earliest concep-
tions of the “span of apprehension” (Jevons, 1871) assumed that there was
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some number, N, of discrete objects that the mind could immediately
perceive, apprehend, or recognize. Such a process —later called subitizing
(Jensen, Reese, & Reese, 1950)—would produce a flat slope of reaction time
versus N. In addition to assessing these two positions, Chi and Klahr
addressed the developmental question of how the two processes differed in
children and adults.

Subjects were presented with randomly arranged displays of N dots and
asked to say as rapidly as possible how many there were in the display. The
range of N was from ] to 10 for adult subjects and from 1 to 8 for the
children. Reaction times were measured from the onset of the display to the
beginning of the verbal response. The results are shown in Fig. 5.4. For
both the adults and the children, the mean reaction times were best fit by a
two-segment linear regression analysis with a break point between N=13
and N = 4. For N = 3—the subitizing range—the slope of the adult
function is about 50 msec per dot, whereas for the children it is nearly 4
times as great. For N ¢ 4—the counting range—the slope is about 300 msec
for adults and about 1 sec for children. Error rates were nearly zero for N
< 4 for both children and adults. Beyond that range, they abruptly
increased to about 25% for children, and about 5% for adults. Based on the
characteristic pattern of results (both RTs and errors} and the specific
parameter estimates for rates and ranges, Chi and Klahr (1975, p. 438)
concluded that in both adults and young children, there appear to be two
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distinct quantification processes. One process, operating almost errorlessly
on the range below N = 4 is 5 to 6 times as rapid as the other, which
operates on the range above N = 3.

Microgenetic Studies

In the context of chronometric studies, the phrase “time course of cognitive
processing” implies brief tasks with components identified at the level of
fractions of a second. But the phrase can also refer to the much longer
intervals (weeks, months, or years) over which cognitive change occurs. The
most common way to investigate change is to design cross-sectional studies
in which the same task is presented to groups of subjects at different ages
(e.g., Kail's studies described earlier). Somewhat less common are longitu-
dinal studies in which the same group of subjects is assessed repeatedly over
an extended time period. Typically, the observation points in longitudinal
studies are months or years apart and the measurements are relatively crude
when compared to chronometric tasks. However, an interest in the more
detailed aspects of changes in children’s information processing has led to
an approach called the microgenetic method that is particularly well suited
to detecting changes in children’s strategies.

Three key properties define the microgenetic approach: (a) Observations span
the entire period from the beginning of the change of interest to the time at
which it reaches a relatively stable state; (b) The density of observations is
high relative to the rate of change of the phenomenon; (¢} Observed behavior
is subjected to intensive trial-by-trial analysis, with the goal of inferring the
processes that give rise to both quantitative and qualitative aspects of change.
(Siegler & Crowley, 1991, p. 606)

Siegler and Crowley summarize the history and current status of micro-
genetic studies, and then provide a detailed account of one study that
exemplifies the microgenetic method. Siegler and Jenkins (1989) focused on
how children discovered the min strategy for addition (described earlier).
They followed eight 4- and 5-year-old children over an 11-week period. At
the start of the period ali of the children were proficient at simple addition
{problems with addends 1-5 inclusive}, and their most common addition
strategy was to count from 1. Children received seven problems in each of
approximately three sessions per week during the 11-week period. In order
to determine what strategy a child used on each problem, Siegler and
Jenkins used a variety of methods such as observing their behavior
(counting on fingers, and so forth} and measuring speed and accuracy.
However, their primary method involved simply asking children how they
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solved each problem. The following example is taken from a trial on which
a 5-year-old first used the min strategy (Siegler & Crowley, 1991, p. 613):

E: How much is 2 + 57

8: 2 + 5—(whispers), 6, 7—it’s 7.

E: How did you know that?

S: {excitedly) Never counted!

E: You didn’t count?

S: Just said it—1 just said after 6 something—7, 67,

The rich data set produced by this high-density measurement technique
yielded a correspondingly rich portrait of developmental change. At the
maost aggrepate level, children improved from about 75% correct to nearly
perfect performance over the Il weeks, More interesting than just the
outcome of each trial was the pattern of strategies used to produce those
cutcomes. Overall, children used half a dozen different strategies, and,
more important, this variability was true not only for the group, but for
individual children. Furthermore, the study provided clear data on the
discovery of new strategies, on the precursors of strategy discovery, and on
the subsequent consegquences of strategy discovery. Based on their own
work and that of others, Siegler and Crowley (1991) conclude that

. . . microgenetic experiments have yielded closely parallel results across guite
diversé changes. One such finding involves the halting and uneven use of
newly acquired competencies. Even after children discover sophisticated
scientific experimentation strategies, they often continue to use less sophisti-
cated ones as well (Kuhn, Amsel, & O'Loughlin, 1988; Kuhn & Phelps, 1982;
Schauble, 1990). When they discover a new problem solving method with the
help of their mothers, they may Jater fall back on shared control rather than
continuing to exert sole responsibility for its execution (Wertsch & Hickmann,
1987). New concepts about the workings of gears are applied in a similarly
sporadic fashion (Metz, 1985), as are new strategies for adding numbers
(Siegler & Jenkins, 1989). (p. 618)

Another commeon finding of microgenetic studies is that innovations
occur following successes as well as failures. Discoveries have been found to
follow successes, rather than impasses or errors, in many children’s map
drawing and language use {Karmiloff-Smith, 1984), arithmetic (Siegler &
Jenkins, 1989), pictorial representations (Inhelder et al., 1976), and scien-
tific experimentation strategies (Kuhn, Amsel, & O'Loughlin, 1588; Kuhn &
Phelps, 1982; Schauble, 1990), These findings point to the importance of
observing in a variety of domains the frequency and types of variation
produced without apparent external motivation.
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USING HIGH-DENSITY DATA FROM ERROR
PATTERNS AND PROTOCOLS TO INDUCE
AND TEST COMPLEX MODELS

Pass/fail data provide only the crudest form of information about under-
lying processes. Nevertheless, most of the empirical research in cognitive
development is reported in terms of percentage of correct answers. Another
characteristic of the information-processing approach is the premise that
much more can be extracted from an appropriate record of children’s
performance. The basic assumption is that, given the goal of understanding
the processing underlying children’s performance, we should use all the
means at our disposal to get a glimpse of those processes as they are
occurring, and not just when they produce their final output. Verbal
protocols, eye movements, and error patterns (as well as chronometric
methods, mentioned earlier) all provide this kind of high-density data.
Examples of some of these methods have already been provided in previous
sections, but here we look at them in more detail.

The view that detailed error analysis provides a powerful window into the
child’s mental processes is neither novel nor radical. Piaget’s pioneering
analysis (Piaget, 1928, 1929) of children’s characteristic errors and miscon-
ceptions in a wide variety of domains made him, in effect, a founding
member of the soft-core information-processing club. He was probably the
first to demonstrate that children’s errors could reveal as much, or more,
about their thought processes as their successes, and a substantial propor-
tion of his writing is devoted to informal inferences about the underlying
knowledge structures that generate children’s misconceptions in many
domains (see Kuhn, this volume). Siegler (1981) put the issue this way:

Many of Piaget's most important insights were derived from examining
children’s erroneous statements; these frequently revealed the type of changes
in reasoning that occur with age. Yet in our efforts to make knowledge-
assessment techniques more reliable and more appl’zable to very young
children, we have moved away from this emphasis on erronecus reasoning
and also away from detailed analyses of individua! children’s reasoning. . . -
The result may have been a loss of valuable information about the acquisition
process. . . . [My] hypothesis is that we might be able to increase considerably
our understanding of cognitive growth by devoting more attention to indi-
vidual children’s early, error-prone reasoning. (p. 3)

Analysis of Error Patterns

The basic assumption in error-analytic methodologies is that children's
knowledge can be represented as a set of stable procedures that, when
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probed with an appropriate set of problems, will generate a characteristic
profile of responses (including specific types of errors). Application of this
idea to children’s performance reached perhaps its most elegant form in the
computer simulation models of children’s subtraction errors by Brown and
his colleagues (Brown & Burton, 1978; Brown & VanLehn, 1982). Brown
and his colleagues demonstrated that a wide variety of children’s subtrac-
tion errors could be accounted for by a set of “bugs” in their calculation
procedures. For example, two of the most frequent bugs discovered by
Brown and Burton were:

BORROW FROM ZERO:
When borrowing from a column whose top digit is 0, 103
the student writes 9, but does not continue borrowing ~45
from the column to the left of the zero. 158

SMALLER FROM LARGER:

The student subtracts the smaller digit in a column from 254
the larger regardless of which one is on top. ~ 118
144

These and dozens of more subtle and complex bugs were inferred from the
analysis of thousands of subtraction test items from 1,300 children. The key
to the analysis was the creation of a network of subprocedures that
comprise the total knowledge required to solve subtraction problems. This
procedural network was then examined for possible points of failure, to
explain the patterns of erroneous answers.

Another highly productive research program based on the analysis of
error patterns is Siegler’s well-known rule assessment methodology (Siegler,
1976, 1981). The basic idea in this and other developmentally oriented
error-analysis work {e.g., Baylor & Gascon, 1974; Klahr & Robinson, 1981;
Young, 1976) is that, at any point in the development of children’s
knowledge about a domain, their responses are based on what they know at
that point, rather than on what they don’t know. In order to characterize
that (imperfect) knowledge, the theorist attempts to formulate a model of
partial knowledge that can generate the full set of responses—both correct
and incorrect—in the same pattern as did the child. The model thus
becomes a theory of the child’s knowledge about the domain at that point
in her development.

Fay and Mayer (1987) applied this kind of error analysis to the domain of
spatial reference. They were attempting to teach children (from 9 to 13 years
old) how to write programs in Logo, a programming language in which
children write commands for a “turtle” that draws lines on the computer
sereen. Logo includes commands that can move the turtle forward or
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backward (FD or BK) a specified number of units, and that can rotate the
turtle to the left or right (LT or RT) a specified number of degrees. For
example, to draw a square box 5 units on a side, the child might write the
following program:

FD 5 RT 90 FD 5 RT 90 FD 5 RT S0 FD 5 RT 90.

During the execution of this program, the turtle would be in four
different orientations, and the RT command would be interpreted relative
to the turtle’s current orientation, rather than absolutely,

The distinction between relative and absolute orientation is difficult for
children of this age, and so Fay and Mayer used the Logo context to study
children's naive conceptions about spatial reference. They examined how
children interpreted Logo commands to move and turn from various initial
orientations. Children were presented with problems that varied in initial
orientation of the turtle, the type of command (move or turn), and the value
of the argument (how far to move or turn). Their task was to predict the
final orientation of the turtle, given its initial orientation and command.

Fay and Mayer first constructed an ideal model, comprised of about a
dozen elementary operations. Then, based on the general characteristics of
children's errors, they proposed six types of misconceptions (e.g., that a
right-turn command actually slides the turtle to the right) and formulated
models for the microstructure of each misconception, in terms of degen-
erate versions of relevant parts of the ideal model. For the subjects to which
these degenerate models were applied, Fay and Mayer were able to account
for nearly every one of the (mostly) incorrect responses to the 24 items in
their test battery.

Error-analyses of this type are not only useful for cognitive develop-
mental theory, but they also have pedagogical implications. The potential
for facilitating remedial instruction is what originally motivated the Brown
and Burton work on children’s subtraction bugs, and it continues to be a
valuable by-product of detailed error-analysis research:

.. . novice Logo programmers appear to enter the Logo environment with
individual confusions and misconceptions that they apply fairly consistently
during instruction. Diagnosis of the specific confusions —such as a misunder-
standing of what left and right mean or a misunderstanding of what degrees
of rotation means — provides a more detailed and potentially useful evaluation
of students’ knowledge than the traditional global measurement of percentage
correct. A cognitive diagnosis . . . provides information concerning what a
student knows rather than a traditional measurement of how much a student
can do. (Fay & Mayer, 1987, p. 265)

I believe that this kind of work illustrates the basic premise of this aspect
of information-processing approaches: Careful and creative analysis of
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complex error patterns can provide an extremely informative window into
the child’s mental processes.

Analysis of Protocols

Protocol analysis is another form of high-density data that is often
associated with information-processing approaches. The basic idea here is
that, in addition to final responses on tasks, the subject can generate
external indications of intermediate states, and that this pattern of inter-
mediate indicators (the protocol} can be highly informative about the
underlying processes that generated the final response. Included here are
not only children’s verbal protocols, such as the Siegler and Jenkins data
described earlier, but also sequences of eye movements (Haith, 1980;
Vurpillot, 1968) and other motor responses, such as reaching (Granrud,
Haazke, & Yonas, 1985). The classic verbal protocol analyses with adults
are reported in Newell and Simon (1972), and a theoretical and method-
ological discussion of protocol analysis is offered in Ericsson and Simon
(1984).

A common misconception about the verbal protocol analysis method-
ology is that it requires subjects to give an introspective account of their
own behavior, and therefore is unreliable and unacceptably subjective
(Nisbett & Wilson, 1977). Clearly, this would be a fatal flaw in the
methodology, especially if it is to be used with children. But the criticism is
unfounded. As Anderson (1987) summarized the issue:

Many of these unjustified criticisms of protocols stem from the belief that
they are taken as sources of psychological theory rather than as sources of
data about states of the mind. For the latter, one need not require that the
subject accurately interpret his mental states, but only that the theorist be able
to specify some mapping between his reports and states of the theory. (p. 472)

In adult information-processing psychology, protocol analysis is a wide-
spread method, but it is only infrequently used in more than a casual
fashion by current cognitive developmentalists, This is very surprising,
when one considers the fact that Piaget was the most prolific collector and
analyzer of verbal protocols in the history of psychology.

Klahr and Robinson (1981) used a combination of motor and verbal
protocol analysis and error analysis to explore preschool children’s problem-
solving and planning skills. They used a variant of the Tower of Hanoi
puzzle (described earlier) in which both the initial state and the goal state
were physically displayed (see Fig. 5.5). Children were presented with
partially completed three-disk (actually, “three-can™) problems requiring
from two to seven moves to solution, and they were instructed to describe
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Chitd's side
{Goal state) ——w

Exparimenter's side
{Initicl sigte) —a

FIG. 5.5. Chiidren's version of the Tower of Hanoi puzle. The cans and
pegs on the child's side of the table represent the goal state, and the can's
and pegs on the opposita side represent the inltial state. The child's task
js to describe the full sequence of lagal moves that will transform the
initial state into the goal state. The problem depicted here can be sgolved
In one move {from Klahr & Robinson, 1881}

the full sequence of moves that would change the initial state so that it
matched the goal state. Children were videotaped as they described—
verbally and by pointing - what sequence of moves they would use to solve
the problem, but the cans were never actually moved. The protocols enabled
Klahr and Robinson to infer the children’s internal representation of the
location of each can, and the processes whereby children made moves. They
then constructed several alternative models of children’s strategies, and used
the error-analysis technique described earlier to identify each child’s re-
sponse pattern with a specific strategy. Note that nowhere were the children
asked to reflect on their own mental processes, or to give a report on what
strategies they were using while solving the problems.

The information extracted from the protocols in the Klahr and Robinson
study consisted of a planned sequence of well-defined moves of discrete
objects. This level of mapping from the protocol to hypothesized represen-
tations and processes is characteristic of the kind of protocol analyses
presented in Newell and Simon’s (1972) seminal work. A “richer” use of
protacols, similar to some of the later examples in Ericsson and Simon
(1984), provides the basis of recent investigations of children’s strategies for
scientific reasoning (Dunbar & Kiahr; 1989; Kuhn, 1989; Schauble, 1990).
Klahr, Fay, and Dunbar (1991) used verbal protocols as the primary data
source in their study of experimentation strategies. Children (aged 8 to 11
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years old) and adults were presented with a programmable robot, taught
about most of its operating characteristics, and then asked to discover how
some additional feature worked. They were asked to talk aloud as they
generated hypotheses, ran experiments (i.e., wrote programs for the robot
and ran them), and made predictions, observations, and evaluations. These
verbal protocols were then analyzed in terms of different classes of
hypotheses, the conditions under which experiments were run, how ob-
served results were assessed, and so on. Based on this analysis, Klahr and
his colleagues were able to characterize some of the differences in scientific
reasoning skills between children and adults. In particular, they demon-
strated that younger children have very poor general heuristics for designing
experiments and evaluating their outcomes.

CONSTRAINTS AND LIMITATIONS

For all of its pervasiveness, the information-processing approach to cogni-
tive development has several constraints and limitations. In her discussion
of the limitations of information-processing approaches, Kuhn (this vol-
ume) addresses some of these issues. Here, I offer a somewhat different
perspective. The extent to which these limitations and constraints are
temporary or fundamental and permanent remains to be seen.

Populations

To date, hard-core information-processing approaches to cognitive devel-
opment have been focused primarily on normal children over 2 years old,
Those approaches that have dealt with younger, older or special popula-
tions have tended to be of the soft-core variety: for example, Davidson's
(1986) study of gifted children, Hoyer and Familant’s (1987) and Madden’s
(1987) studies of elderly subjects, and Geary, Widaman, Little, and
Cormier’s {(1987) and Spitz and Borys' (1984} investigations of learning
disabled and retarded subjects. In the case of special populations, issues are
usually framed by the theoretical or empirical results emerging from studies
of normal populations, and the question of interest is the qualitative or
quantitative difference in a particular information-processing construct.
For example, Spitz and Borys (1984) investigated the differences in search
processes between normal and retarded aduits on the classic Tower of
Hanoi puzzle. Interesting work using information-processing concepts and
techniques has also been done with non-human species. For example, Arbib
(1987) proposed a series of models of visually guided behavior in frogs that
utilize the schema notion described earlier. His work has many of the
information-processing features discussed in this chapter, including formal
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representations and computer simulation. None of these populations,
however, has been the subject of as much information-processing research
as have typical children.

Toples

The developmental topics studied within this approach range from higher
cognitive processes, such as problem solving (Resnick & Glaser, 1976) and
scientific reasoning (Dunbar & Klahr, 1989; Kuhn & Phelps, 1982), to more
basic processes, such as attention and memory (Chi, 1981; Kail, 1984),
Because the focus of this chapter is cognitive development, I have drawn the
conventional—and arbitrary —boundary that precludes an extensive discus-
sion of perceptual-motor or language development, Nevertheless, 1 would
be hard pressed to present a principled argument for excluding either of
these areas from mainstream information processing, for in both of them
one can find many examples of the approach (MacWhinney, 1987b; Yonas,
1988). MacWhinney's (1987a) edited volume on mechanisms of language
acquisition contains an array of information-processing approaches that
run the gamut from soft- to hard-core features. In the area of perceptual
development, Marr's (1982) seminal work, which advocates computational
models as the proper approach to constructing theories of vision, is
increasingly influential. Indeed, Banks (1988), in presenting his own
computational model of contrast constancy, argued that perceptual devel-
opment is a more promising area in which to construct computational
models than cognitive or social development, because there are more
constraints that can be brought to bear to limit the proliferation of untested
(and untestable) assumptions.

Change and Stability

Throughout this chapter I have offered examples of how information-
processing approaches can account for cognitive changes. But stability is
also an important feature of development and the topic has received
extensive attention from developmentalists {(Bornstein & Krasnegor, 1989).
Developmentalists’ interest in stability is primarily based on psychometric
approaches. That is, it deals with relative constancy with respect to
measures that compare one person to another. These approaches do not
study the absence of change, but rather the lack of change in the rank order
of individuals in a group on some measure. For example, consider the
question of whether IQ scores are stable over time. IQ is a relative measure.
The test is designed to order individuals from high to low, and any stability
that is found in such scores means that if Sue scored higher than Sam at age
2, she continued to do so at age 4 (or 10 or 20). There is no question that



324  KLAHR

both Sue and Sam have undergone substantial change in knowledge, skills,
LTM structures, basic processes, and so forth. (Indeed, Kail’s work, cited
earlier, suggests that even at the level of elementary information processes,
both Sue and Sam must have improved proportionally.)

The interesting question is why all of these changes in various aspects of
the information-processing system have not changed the relative standing of
Sue and Sam. To the best of my knowledge, the information-processing
approaches that have addressed this question have either (a) been of the
soft-core variety, or (b) focused on stability in infancy and early childhood
(Bornstein, 1989; Colombo, Mitchell, O'Brien, & Horowitz, 1987; Fagan &
Singer, 1983). A promising area for future research would be the applica-
tion of microgenetic and chronometric techniques to individual differences
and questions of change and stability.

Nonsymbolic Computational Architectures

One of the justifications given earlier for excluding perceptual, motor, and
language development from this chapter was its focus on higher cognitive
processes in children of school age and above. Another reason is that this
chapter has focused on symbolically oriented information-processing ap-
proaches, to the exclusion of the newer connectionist framework., Advo-
cates of this approach to computational models of cognition argue that
information-processing approaches of the symbolic variety are inherently
inadequate to account for the important phenomena in language acquisition
and perceptual-motor behavior. The gist of the argument is that, given the
highly parallel and “presymbolic” nature of these areas, it is doubtful that
highly serial symbol-oriented information-processing models will ever be
able to provide plausible accounts of development in these areas.

Indeed, this purported weakness is, according to some connectionists
(McClelland, 1989; Rumelhart & McClelland, 1986), the Achilles heel of the
symbolic approach to computational modeling. Furthermore, from a
developmental perspective, the situation is particularly troublesome, for if
we are to model a system from its neonatal origins, then we will have to
invent new ways to model the interface between perceptual-motor systems
and central cognition, particularly at the outset, when they provide the basis
for all subsequent cognition.

Connectionism’s advocates have suggested several very important and
exciting possibilities, including the possibility that connectionist approaches
may be particularly well suited for modeling biological changes underlying
cognitive development. To date, the most interesting work has been in the
area of language acquisition (MacWhinney, Leinbach, Taraban, & McDon-
ald, 1989; Plunkett & Marchman, 1991}, although there are a few connec-
tionist models of higher order cognitive transitions, such as McClelland and
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Jenkins' (1991) simulation of rule acquisition on Siegler’s balance scale task.
Many other connectionist models are summarized by Bechtel and Abra-
hamsen (1991). Included in their set of potential contributions are (a) a new
interpretation of the distinction between maturation and learning, (b) a
computational instantiation of the distinction between accommodation and
assimilation, (c) an account of context effects (in which minor task
variations have large effects on preschoolers’ performance [Gelman, 1978D),
and (d) explanations of many of the phenomena and anomalies associated
with stages and transitions.

At present, there are not enough connectionist models of developmental
phenomena to decide the extent to which they will replace, augment, or be
absorbed by the symbolic variety of information-processing models de-
scribed in this chapter. Nevertheless, both the broad-gauged connectionist
criticisms of symbol-oriented approaches to cognition and the potential
connectionist contributions to computational models of cognitive develop-
ment warrant careful consideration.

CONCLUSIONS

Rather than attempt to summarize a chapter that is already a summary of
ongoing research, in this concluding section 1 (a) reiterate the case for
computational models of developmental phenomena, and (b) speculate
about the future of information-processing approaches to cognitive devel-
opment.

Why Bother?

Why should someone’ interested in theories of cognitive development be
concerned about computational models of the sort discussed earlier? The
primary justification for focusing on such systems is the claim that
self-modification is the centra! question for cognitive developmental theory.
It appears to me that in order to make theoretical advances, we will have to
formulate computational models at least as complex as the systems de-
scribed here,

Kuhn (Chap. 4, this volume) criticizes the information-processing ap-
proach for being insufficiently attentive to the issue of self-modification. As
noted earlier, she is not alone in this regard, but there is some irony in the
current situation. Although it is not difficult to find developmentalists who
fault hard-core treatments of transition and change, it is even easier to find
criticisms of the entire field of developmental psychology for its inability to
deal adequately with these central topics.
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I have asked some of my developmental friends where the issue stands on
transitional mechanisms. Mostly, they say that developmental psychologists
dan't have good znswers. Moreover, they haven't had the answer for so long
now that they don't very often ask the question anymore--not daily, in terms
of their research. (Newell, 1990, p. 462)

Is this too harsh a judgment? Perhaps we can dismiss it as based on
hearsay, for Newell himself is not a developmental psychologist. But it is
harder to dismiss the following assessment from John Flavell (1984):

. serious theorizing about basic mechanisms of cognitive growth has
actually never been a popular pastime. . . . It is rare indeed to encounter a
substantive treatment of the problem in the annual flood of articles, chapters,
and books on cognitive development. The reason is not hard to find: Good
theorizing about mechanisms is very, very hard to do. {p. 189)

Even more critical is the following observation on the state of theory in
perceptual development from one of the area’s major contributors in recent
years:

Put simply, our models of developmental mechanisms are disappointingly
vague. This observation is rather embarrassing because the aspect of percep-
tual developmental psychology that should set it apart from the rest of
perceptual psychology is the explanation of how development occurs, and
such an explanation is precisely what is lacking. (Banks, 1987, p. 342)

It is difficult to deny either Newell's or Bank’s assertions that we don’t
have good answers, or Flavell’s assessment of the difficulty of the question.
However, 1 believe that it is no longer being avoided: Many developmen-
talists have been at least asking the right questions recently. In the past few
years we have seen Sternberg’s (1984) edited volume Mechanisms of
Cognitive Development, MacWhinney's (1987b) edited volume Mechanisms
of Language Acquisition, and Siegler’s (1989) Annual Review chapter
devoted to transition mechanisms. So the question is being asked.

Furthermore, the trend is in the direction of hardening the core. Only a
few of the chapters in the 1984 Sternberg volume specify mechanisms any
more precisely than at the flow-chart level, and most of the proposed
mechanisms are at the soft end of the informatjon-processing spectrum.
However, only 3 years later, Klahr et al.’s (1987) Production System
Models of Learning and Development included several chapters that
described running programs, and within 5 years, Siegler (1989), in charac-
terizing several general categories for transition mechanisms (neural mech-
anisms, associative competition, encoding, analogy, and strategy choice),
cited computationally based exemplars for all but the neural mechanisms
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(e.g., Bakker & Halford, 1988; Falkenhainer, Forbus, & Gentner, 1986;
Holland, 1986; MacWhinney, 1987a; Rumelhart & McClelland, 1986;
Siegler, 1988).

A clear advantage of such computational models is that they force
difficult questions into the foreground, where they can be neither side-
tracked by the wealth of experimental results, nor obscured by vague
characterizations of the various essences of cognitive development. The
relative lack of progress in theory development —noted by Banks, Flavell,
and Newell—is a consequence of the fact that, until recently, most
developmental psychologists have avoided moving to computationally
based theories, attempting instead to attack the profoundly difficult
question of self-modification with inadequate tools. Mastery of the new
tools for computational modeling is not easy. Nevertheless it appears to be
a necessary condition for advancing our understanding of cognitive devel-
opment. As Flavell and Wohlwill (1969) noted more than 20 years ago:
“Simple models will just not do for human cognition” (p. 74).

The Future of the Hard-Core Approach

That brings me to my second concluding topic: the education of future
cognitive developmentalists. The conceptual and technical skills necessary
for computational modeling require training of a different sort than one
finds in most graduate programs today. However, I see the current sitwation
as analogous to earlier challenges to the technical content of graduate
training. When other kinds of computational technology that are now in
common use—such as statistical packages, or scaling procedures—were
first being applied to psychological topics, journal articles invariably
included several pages of description about the technique itself. Writers of
those early articles correctly assumed that their readers needed such
background information before the psychological issue of interest could be
addressed. Today, writers of papers using analysis of variance, or multidi-
mensional scaling, or path analysis simply assume that their readers have
had several courses in graduate school, learning the fundamentals.
Similarly, in the early years of computer simulation, the necessary
resources of large main frame computers were limited to very few research
centers, and exposure to computational modeling was inaccessible to most
developmentalists. Even today, few developmental psychologists have had
any training with computational models, and only a handful of computa-
tional modelers have a primary interest in cognitive development. Never-
theless, the intersection of these two areas of research is growing. (The 1891
meeting of the Society for Research in Child Development included two
hard-core symposia, one entitled “Connectionist Models and Child Devel-
opment” and the other “Computational Models of Cognitive Transition
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Mechanisms.”) Moreover, with the increasing availability of powerful
work-stations, the proliferation of computer networks for dissemination of
computational models, and the increasing number of published reports on
various kinds of computationally based cognitive architectures, the appro-
priate technology and support structures are becoming widely accessible,
This accessibility will make it possible to include simulation methodology as
a standard part of graduate training.

My hope is that, over the next few decades, we will begin to see many
papers about cognitive development couched in terms of extensions to
systems like Soar, or ACT*, or some other well-known {by then) cognitive
architecture, or some future connectionist model. Just as current writers
need not explain the conceptual foundations of an analysis of variance, so
future writers will deem it unnecessary to include tutorials on computa-
tional models in their papers. Once we are fully armed with such powerful
tools, progress on pur most difficult problems will be inevitable. We will no
longer talk of approaches to our problems, but rather, of proposals for
their solutions.
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